answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NISA [10]
2 years ago
5

The figure shows a crane whose weight is 12.5 kN and center of gravity in G. (a) If the crane needs to suspend the 2.5kN drum, d

etermine the reactions on the wheel in A and B when the boom is in the position shown.(b) Considering the same situation illustrated, what is the value of the maximum weight that the crane can suspend without tipping over?

Physics
1 answer:
Radda [10]2 years ago
5 0

Answer:

(a) Ra = 9.25 kN; Rb = 5.75 kN

(b) 26.7 kN

Explanation:

(a) Draw a free-body diagram of the crane.  There are four forces:

Reaction Ra pushing up at A,

Reaction Rb pushing up at B,

Weight force 12.5 kN pulling down at G,

and weight force 2.5 kN pulling down at F.

Sum of moments about B in the counterclockwise direction:

∑τ = Iα

-Ra (0.66 m + 0.42 m + 2.52 m) + 12.5 kN (2.52 m + 0.42 m) − 2.5 kN ((3.6 m + 0.9 m) cos 30° − 2.52 m) = 0

-Ra (3.6 m) + 12.5 kN (2.94 m) − 2.5 kN (1.38 m) = 0

Ra = 9.25 kN

Sum of moments about A in the counterclockwise direction:

∑τ = Iα

Rb (0.66 m + 0.42 m + 2.52 m) − 12.5 kN (0.66 m) − 2.5 kN ((3.6 m + 0.9 m) cos 30° + 0.66 m + 0.42 m) = 0

Rb (3.6 m) − 12.5 kN (0.66 m) − 2.5 kN (4.98 m) = 0

Rb = 5.75 kN

Alternatively, you can use sum of the forces in the y direction as your second equation.

∑F = ma

Ra + Rb − 12.5 kN − 2.5 kN = 0

Ra + Rb = 15 kN

9.25 kN + Rb = 15 kN

Rb = 5.75 kN

However, you must be careful.  If you make a mistake in the first equation, it will carry over to this equation.

(b) At the maximum weight, Ra = 0.

Sum of the moments about B in the counterclockwise direction:

∑τ = Iα

12.5 kN (2.52 m + 0.42 m) − F ((3.6 m + 0.9 m) cos 30° − 2.52 m) = 0

12.5 kN (2.94 m) − F (1.38 m) = 0

F = 26.7 kN

You might be interested in
Two children stand on a platform at the top of a curving slide next to a backyard swimming pool. At the same moment the smaller
victus00 [196]

1.

Answer:

a) It is less

Explanation:

By energy conservation we can say that initial potential energy of both child must be equal to the final kinetic energy of the two child.

Since initially they are at same height so we will say that initial potential energy will be given as

mgH and MgH

so the child with greater mass has more energy and hence smaller child will reach with smaller kinetic energy

2.

Answer:

b. The two speeds are equal.

Explanation:

As we know by mechanical energy conservation law we have

mgh = \frac{1}{2}mv^2

v = \sqrt{2gh}

since both child starts at same height so here they both will reach the bottom at same speed

3.

Answer:

c. The two accelerations are equal

Explanation:

Since we know that average acceleration of the motion is given as

a = \frac{v_f - v_i}{\Delta t}

since here initial and final speeds are same so they both must have same average acceleration here.

5 0
2 years ago
A sound technician is testing the sound acoustics in a theatre for an upcoming music concert. As he moves towards the speakers,
Harlamova29_29 [7]

Answer: Increase in wave frequency

Explanation:

When we talk about acoustics we are dealing with sound waves, and one of their main components along with the velocity and wavelength is the <u>frequency.</u>

In this sense, the frequency of any wave refers to how fast (or slow) a wave oscillates. For example, in the especific case of sound waves when the oscillation is faster, the frequency is higher and the pitch gets higher as well.

6 0
2 years ago
Read 2 more answers
 If the gauge pressure of a gas is 114 kPa, what is the absolute pressure?
Anastasy [175]

Answer:

D. 214 kPa

Explanation:

The absolute pressure is given by:

p = p_a + p_g

where

p is the absolute pressure

p_a \sim 100 kPa is the atmospheric pressure

p_g is the gauge pressure

In this problem, we have

p_g = 114 kPa

So, the atmospheric pressure is

p = 100 kPa + 114 kPa = 214 kPa

4 0
2 years ago
Read 2 more answers
three neutral metal cans mounted on isulating stands are touching a negatively charge ballon is brought near can a can b is then
Nimfa-mama [501]
Charge on can A is positive. 
Charge on can C is negative.  
Punctuation and capitalization are very useful things to pay attention to and this question would be a lot easier to understand if you had actually used both capitalization and punctuation. If I'm understanding the question, you have 3 metal can that are insulated from the environment and initially touching each other in a straight line. Then a negatively charged balloon is brought near, but not touching one of the cans in that line of cans. While the balloon is near, the middle can is removed. Then you want to know the charge on the can that was nearest the balloon and the charge on the can that was furthermost from the balloon. 
 As the balloon is brought near to can a, the negative charge on the balloon repels some of the electrons from can a (like charges repel). Some of those electrons will flow to can b and in turn flow to can c. Basically you'll have a charge gradient that's most positive on that part of the can that's closest to the balloon, and most negative on the part of the cans that's furthest from the balloon. You then remove can B which causes cans A and C to be electrically isolated from each other and prevents the flow of elections to equalize the charges on cans A and C when the balloon is removed. So you're left with a deficiency of electrons on can A, so can A will have a positive overall charge, and an excess of electrons on can C, so can C will have a negative overall charge.
7 0
2 years ago
A rocket in deep space has an exhaust-gas speed of 2000 m/s. When the rocket is fully loaded, the mass of the fuel is five times
notka56 [123]

Answer:

 v_{f} = 1,386 m / s

Explanation:

Rocket propulsion is a moment process that described by the expression

       v_{f} - v₀ =  v_{r} ln (M₀ / Mf)

Where v are the velocities, final, initial and relative and M the masses

The data they give are the relative velocity (see = 2000 m / s) and the initial mass the mass of the loaded rocket (M₀ = 5Mf)

We consider that the rocket starts from rest (v₀ = 0)

At the time of burning half of the fuel the mass ratio is that the current mass is    

       M = 2.5 Mf

       v_{f} - 0 = 2000 ln (5Mf / 2.5 Mf) = 2000 ln 2

       v_{f} = 1,386 m / s

3 0
2 years ago
Other questions:
  • A 1.0-kg block and a 2.0-kg block are pressed together on a horizontal frictionless surface with a compressed very light spring
    13·2 answers
  • Neo and Morpheus's masses have gained a velocity (not equal to zero) which means their momentum is now _____ .
    15·2 answers
  • What is the energy density in the magnetic field 25 cm from a long straight wire carrying a current of 12 a? (μ0 = 4π × 10-7 t ·
    6·1 answer
  • Monica pulls her daughter Jessie in a bike trailer. The trailer and Jessie together have a mass of 25 kg. Monica starts up a 100
    12·1 answer
  • Albert presses a book against a wall with his hand. As Albert gets tired, he exerts less force, but the book remains in the same
    6·1 answer
  • A shell is launched with a velocity of 100 m/s at an angle of 30.0° above horizontal from a point on a cliff 50.0 m above a leve
    13·1 answer
  • A box of mass M is pushed a distance Δ x across a level floor by a constant applied force F . The coefficient of kinetic frictio
    12·1 answer
  • A tiger leaps with an initial velocity of 35.0 km/hr at an angle of 13.0ᶿ with respect to the horizontal. What are the component
    13·1 answer
  • Elias serves a volleyball at a velocity of 16 m/s. The mass of the volleyball is 0.27 kg. What is the height of the volleyball a
    14·1 answer
  • An empty glass beaker has a mass of 103 g. When filled with water, it has a total mass of 361g.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!