1. In a single atom, no more than 2 electrons can occupy a single orbital? A. True
2. The maximum number of electrons allowed in a p sublevel of the 3rd principal level is?
B.6
3. A neutral atom has a ground state electronic configuration of 1s^2 2s^2. Which of the following statements concerning this atom is/are correct?
B. All of the above.
Answer:

Explanation:
Given the absence of non-conservative force, the motion of the coin is modelled after the Principle of Energy Conservation solely.



The moment of inertia of the coin is:

After some algebraic handling, an expression for the maximum vertical height is derived:




The collision is a form of inelastic collision because the
it forms a single mass after is collides. So it can be solve by momentum
balance
( 0.08 kg * 50 m/s ) + ( 0.06 kg * 50 m/s) = ( 0.08 + 0.06
kg ) v
V = 50 m/s
So the kinetic energy lost is
KE = 0.5 (50 m/s)^2) *( 0.14 – 0.08kg )
KE = 75 J
Answer:
1848.15J
Explanation:
KE =1/2 mv^2
Mass = 60kg, velocity =40km/h =11.11m/s
Hence
KE =30 x(11.1)^2 /2 = 1848.15J
Answer:
remains the same, but the apparent brightness is decreased by a factor of four.
Explanation:
A star is a giant astronomical or celestial object that is comprised of a luminous sphere of plasma, binded together by its own gravitational force.
It is typically made up of two (2) main hot gas, Hydrogen (H) and Helium (He).
The luminosity of a star refers to the total amount of light radiated by the star per second and it is measured in watts (w).
The apparent brightness of a star is a measure of the rate at which radiated energy from a star reaches an observer on Earth per square meter per second.
The apparent brightness of a star is measured in watts per square meter.
If the distance between us (humans) and a star is doubled, with everything else remaining the same, the luminosity remains the same, but the apparent brightness is decreased by a factor of four (4).
Some of the examples of stars are;
- Canopus.
- Sun (closest to the Earth)
- Betelgeuse.
- Antares.
- Vega.