Answer:
Angle 1 congruent to angle 2
Transitive property
Converse corresponding angles theorem
Answer:

Step-by-step explanation:
Given
Straight Line, PS
Such that


Required
Find PS
From the attachment above, it can be seen that RS is a continuation of PS;
This implies that

Substitute
and 

Collect like terms


Hence, the length of PS is 
Answer:
Sofia is correct.
Step-by-step explanation:
Mark's statement depends on the starting point. He can be correct if they started at the 0 mile, but in this case we don't know where they started. They could had started at the 12 mile and their current position after the walking would be 16 miles.
On the other hand, Sofia's statement doesn't depend on where they started. She refers to how much they walked, not to where they are after the walking. Since they stopped after 4 non-stopping miles, their displacement was exactly 4 miles. So Sofia is correct.
Answer:
probability that all of the sprinklers will operate correctly in a fire: 0.0282
Step-by-step explanation:
In order to solve this question we will use Binomial probability distribution because:
- In the question it is given that the sprinklers activate correctly or not independently.
- The number of outcomes are two i.e. sprinklers activate correctly or not.
A binomial distribution is a probability of a success or failures outcomes in an repeated multiple or n times.
Number of outcomes of this distributions are two.
The formula is:
b(x; n, P) = 
b = binomial probability also represented as P(X=x)
x =no of successes
P = probability of a success on a single trial
n = no of trials
is calculated as:
= n! / x!(n – x)!
= 10! / 10!(10-10)!
= 1
According to given question:
probability of success i.e. p = 0.7 i.e. probability of a sprinkler to activate correctly.
number of trials i.e. n = 10 as number of sprinklers are 10
To find: probability that all of the sprinklers will operate correctly in a fire
X = 10 because we have to find the probability that "all" of the sprinklers will operate correctly and there are 10 sprinklers so all 10 of them
So putting these into the formula:
P(X=x) = 
= C₁₀,₁₀ * 0.7¹⁰ * (1-0.7)¹⁰⁻¹⁰
= 1 * 0.0282 * (0.3) ⁰
= 1 * 0.0282 * 1
P(X=x) = 0.0282
Answer:
<h2>Cubing both sides of an equation is reversible.</h2>
Step-by-step explanation:
Squaring both sides of an equation is irreversible, because the square power of negative number gives a positive result, but you can't have a negative base with a positive number, given that the square root of a negative number doesn't exist for real numbers.
In case of cubic powers, this action is reversible, because the cubic root of a negative number is also a negative number. For example
![\sqrt[3]{x} =-1](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%7D%20%3D-1)
We cube both sides
![(\sqrt[3]{x} )^{3} =(-1)^{3} \\x=-1](https://tex.z-dn.net/?f=%28%5Csqrt%5B3%5D%7Bx%7D%20%29%5E%7B3%7D%20%3D%28-1%29%5E%7B3%7D%20%5C%5Cx%3D-1)
If we want to reverse the equation to the beginning, we can do it, using a cubic root on each side
![\sqrt[3]{x}=\sqrt[3]{-1} \\\sqrt[3]{x}=-1](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%7D%3D%5Csqrt%5B3%5D%7B-1%7D%20%5C%5C%5Csqrt%5B3%5D%7Bx%7D%3D-1)
There you have it, cubing both sides of an equation is reversible.