Answer : The number of moles of oxygen present in a sample are 11.3 moles.
Explanation :
The given compound is, 
By the stoichiometry we can say that, 1 mole of of
has 4 moles of CO.
Or we can say that, 1 mole of of
has 1 mole of nickel (Ni), 4 moles of carbon (C) and 4 moles of oxygen.
That means,
Number of moles of carbon = Number of moles of oxygen
As we are given that:
Number of moles of carbon = 11.3 moles
So, number of moles of oxygen = number of moles of carbon = 11.3 moles
Therefore, the number of moles of oxygen present in a sample are 11.3 moles.
The ionic character of any compound depend on the lattice energy as well as the electronegativity of element present in that compound.
More would be the lattice energy more would be ionic nature of that compound.
The lattice energy of any compound is inversely proportional to the ionic radii cation and anion.
In given case the ionic radii of oxide in both oxides would be equal therefore the lattice energy only depend on the ionic radii of cation.
As the radii of Magnesium less then radii of lithium therefore lattice energy of Magnesium oxide would be more than lithium oxide.
Hence, MgO would be more ionic in nature than 
Under standard temperature and pressure conditions, it is known that 1 mole of a gas occupies 22.4 liters.
From the periodic table:
molar mass of oxygen = 16 gm
molar mass of hydrogen = 1 gm
Thus, the molar mass of water vapor = 2(1) + 16 = 18 gm
18 gm of water occupies 22.4 liters, therefore:
volume occupied by 32.7 gm = (32.7 x 22.4) / 18 = 40.6933 liters
Answer:
a. both temperature changes will be the same
Explanation:
When sodium hydroxide (NaOH) is dissolved in water, a determined amount is released to the solution following the equation:
Q = m×C×ΔT
<em>Where Q is the heat released, m is the mass of the solution, C is the specific heat and ΔH is change in temperature.</em>
Specific heat of both solutions is the same (Because the solutions are in fact the same). Specific heat = C.
m is mass of solutions: 102g for experiment 1 and 204g for experiment 2.
And Q is the heat released: If 2g release X heat, 4g release 2X.
Thus, ΔT in the experiments is:
Experiment 1:
X / 102C = ΔT
Experiment 2:
2X / 204C = ΔT
X / 102C = ΔT
That means,
<h3>a. both temperature changes will be the same</h3>
The student should use the graduated cylinder. A graduated is the most common laboratory glassware when measuring volumes. It has calibrations by 1, 0.5 or 0.1 depending on the maximum volume. You have to make sure though, that you measure the volume by looking at the lower meniscus of the liquid at eye level.