Answer : The results would show more amount of water in the hydrated sample.
Explanation :
The amount of water of crystallization can be found by taking the masses of hydrated copper sulfate and anhydrous copper sulfate.
The difference in masses indicates the mass of water lost during dehydration process.
If during dehydration process, some of the copper sulfate spatters out of the crucible, then this would give us less mass for anhydrous sample than the actual.
As a result, the difference in masses of hydrated sample and the anhydrous sample would be more.
Therefore the results would show more amount of water in the hydrated sample.
Answer:
c = 4016.64 j/g.°C
Explanation:
Given data:
Mass of substance = 2.50 g
Calories release = 12 cal (12 ×4184 = 50208 j)
Initial temperature = 25°C
Final temperature = 20°C
Specific heat of substance = ?
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
Solution:
Q = m.c. ΔT
ΔT = T2 - T1
ΔT = 20°C - 25°C
ΔT = -5°C
50208 j = 2.50 g . c. -5°C
50208 j = -12.5 g.°C .c
50208 j /-12.5 g.°C = c
c = 4016.64 j/g.°C
Answer:
6
Explanation:
You will see H6 and the H stands for helium and the 6 is how many of that atom is there
PH of solution will be greater than seven (pH>7), that means that solution is basic (<span>pH above </span>7<span> is a base, the higher the number, the stronger is the base).
</span>pH (potential of hydrogenis) is a measure of the hydrogen ion (H⁺) concentration of a solution. <span>Solutions with a pH less than 7 are acidic.</span>
Part (a) :
H₂(g) + I₂(s) → 2 HI(g)
From given table:
G HI = + 1.3 kJ/mol
G H₂ = 0
G I₂ = 0
ΔG = G(products) - G(reactants) = 2 (1.3) = 2.6 kJ/mol
Part (b):
MnO₂(s) + 2 CO(g) → Mn(s) + 2 CO₂(g)
G MnO₂ = - 465.2
G CO = -137.16
G CO₂ = - 394.39
G Mn = 0
ΔG = G(products) - G(reactants) = (1(0) + 2*-394.39) - (-465.2 + 2*-137.16) = - 49.3 kJ/mol
Part (c):
NH₄Cl(s) → NH₃(g) + HCl(g)
ΔG = ΔH - T ΔS
ΔG = (H(products) - H(reactants)) - 298 * (S(products) - S(reactants))
= (-92.31 - 45.94) - (-314.4) - (298 k) * (192.3 + 186.8 - 94.6) J/K
= 176.15 kJ - 84.78 kJ = 91.38 kJ