answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
amid [387]
2 years ago
14

Elias serves a volleyball at a velocity of 16 m/s. The mass of the volleyball is 0.27 kg. What is the height of the volleyball a

bove the gym floor if its total mechanical energy is 41.70 J? Round to the nearest tenth. m
Physics
1 answer:
liberstina [14]2 years ago
6 0

Answer:

The correct answer to the following question will be "2.7 m".

Explanation:

The given values are:

Velocity, v = 16 m/s

mass, m = 0.27 kg

Mechanical energy, M.E = 41.70 J

g = 9.8 m/s²

As we know,

Kinetic energy, K=\frac{mv^2}{2}

Potential energy, U=m.g.h

Now, the total mechanical energy will be:

⇒  \frac{mv^2}{2}+U

⇒  41,71 \ kg.m^2/s^2

Now,

⇒  h=\frac{E-(\frac{mv^2}{2})}{mg}

On putting the estimated values, we get

⇒    =\frac{41.70-(\frac{0.27(16)^2}{2})}{0.27\times 9.8}

⇒    =\frac{41.70-(\frac{0.27\times 256}{2} )}{2.64}

⇒    =\frac{41.70-34.56}{2.64}

⇒    =\frac{7.14}{2.64}

⇒    =2.7 \ m

You might be interested in
A laser emits two wavelengths (λ1 = 420 nm; λ2 = 630 nm). When these two wavelengths strike a grating with 450 lines/mm, they pr
Harlamova29_29 [7]

Answer:

a) m = 3 for λ1 and m= 2 for λ2 will overlap since they have the same values

b) At what angle does this overlap occur = 34.54 degree

Explanation:

The detailed steps and appropriate formula is as shown in the attachment.

8 0
2 years ago
A 5.0-kg rock and a 3.0 × 10−4-kg pebble are held near the surface of the earth.(a)Determine the magnitude of the gravitational
a_sh-v [17]

Answer:

a). Determine the magnitude of the gravitational force exerted on each by the earth.

Rock: F = 49.06N

Pebble: F = 29.44N

(b)Calculate the magnitude of the acceleration of each object when released.

Rock: a =9.8m/s^{2}

Pebble:  a =9.8m/s^{2}

Explanation:

The universal law of gravitation is defined as:

F = G\frac{m1m2}{r^{2}}  (1)

Where G is the gravitational constant, m1 and m2 are the masses of the two objects and r is the distance between them.

<em>Case for the rock </em>m = 5.0 Kg<em>:</em>

m1 will be equal to the mass of the Earth m1 = 5.972×10^{24} Kg and since the rock and the pebble are held near the surface of the Earth, then, r will be equal to the radius of the Earth r = 6371000m.

F = (6.67x10^{-11}kg.m/s^{2}.m^{2}/kg^{2})\frac{(5.972x10^{24} Kg)(5.0 Kg)}{(6371000 m)^{2}}

F = 49.06N

Newton's second law can be used to know the acceleration.

F = ma

a =\frac{F}{m} (2)

a =\frac{(49.06 Kg.m/s^{2})}{(5.0 Kg)}

a =9.8m/s^{2}

<em>Case for the pebble </em>m = 3.0 Kg<em>:</em>

F = (6.67x10^{-11}kg.m/s^{2}.m^{2}/kg^{2})\frac{(5.972x10^{24} Kg)(3.0 Kg)}{(6371000 m)^{2}}

F = 29.44N

a =\frac{F}{m}

a =\frac{(29.44 Kg.m/s^{2})}{(3.0 Kg)}

a =9.8m/s^{2}

3 0
2 years ago
Read 2 more answers
What is the Physics Primer?
Elza [17]

Answer:

A. a set of mathematically topics that are relevant to introductory physics.

Explanation:

The physics primer is not defined as the online comprehensive mathematics textbooks. It is the set of topics of mathematics which gives students trouble and remember.

Therefore, it is defined as the process of physics problem solving. So, mathematically skills are covered in physics course as a primer related success.

Therefore, it is a set of topics of mathematics that are relevent to introductory physics.

7 0
2 years ago
Read 2 more answers
The position of a particle moving along the x-axis varies with time according to x(t) = 5.0t^2 − 4.0t^3 m. Find (a) the velocity
KengaRu [80]
<h2>Answer:</h2>

(a) v(t) = [10.0t - 12.0t²] m/s  and a(t) = [10.0 - 24.0t ] m/s² respectively

(b) -28.0m/s and -38.0m/s² respectively

(c) 0.83s

(d) 0.83s

(e) x(t)  = 1.1573 m           [where t = 0.83s]

<h2>Explanation:</h2>

The position equation is given by;

x(t) = 5.0t² - 4.0t³ m           --------------------(i)

(a) Since velocity is the time rate of change of position, the velocity, v(t), of the particle as a function of time is calculated by finding the derivative of equation (i) as follows;

v(t) = dx(t) / dt = \frac{dx}{dt} = \frac{d}{dt} [ 5.0t² - 4.0t³ ]

v(t) = 10.0t - 12.0t²     --------------------------------(ii)

Therefore, the velocity as a function of time is v(t) = 10.0t - 12.0t² m/s

Also, since acceleration is the time rate of change of velocity, the acceleration, a(t), of the particle as a function of time is calculated by finding the derivative of equation (ii) as follows;

a(t) = dx(t) / dt = \frac{dv}{dt} =  \frac{d}{dt} [ 10.0t - 12.0t² ]

a(t) = 10.0 - 24.0t             --------------------------------(iii)

Therefore, the acceleration as a function of time is a(t) = 10.0 - 24.0t m/s²

(b) To calculate the velocity at time t = 2.0s, substitute the value of t = 2.0 into equation (ii) as follows;

=> v(t) =  10.0t - 12.0t²

=> v(2.0) = 10.0(2) - 12.0(2)²

=> v(2.0) = 20.0 - 48.0

=> v(2.0) = -28.0m/s

Also, to calculate the acceleration at time t = 2.0s, substitute the value of t = 2.0 into equation (iii) as follows;

=> a(t) = 10.0 - 24.0t

=> a(2.0) = 10.0 - 24.0(2)

=> a(2.0) = 10.0 - 48.0

=> a(2.0) = -38.0 m/s²

Therefore, the velocity and acceleration at t = 2.0s are respectively -28.0m/s and -38.0m/s²

(c) The time at which the position is maximum is the time at which there is no change in position or the change in position is zero. i.e dx / dt = 0. It also means the time at which the velocity is zero. (since velocity is dx / dt)

Therefore, substitute v = 0 into equation (ii) and solve for t as follows;

=> v(t) = 10.0t - 12.0t²

=> 0 = 10.0t - 12.0t²

=> 0 = ( 10.0 - 12.0t ) t

=> t = 0            or             10.0 - 12.0t = 0

=> t = 0            or             10.0 = 12.0t

=> t = 0            or             t = 10.0 / 12.0

=> t = 0            or             t = 0.83s

At t=0 or t = 0.83s, the position of the particle will be maximum.

To get the more correct answer, substitute t = 0 and t = 0.83 into equation (i) as follows;

<em>Substitute t = 0 into equation (i)</em>

x(t) = 5.0(0)² - 4.0(0)³ = 0

At t = 0; x = 0

<em>Substitute t = 0.83s into equation (i)</em>

x(t) = 5.0(0.83)² - 4.0(0.83)³

x(t) = 5.0(0.6889) - 4.0(0.5718)

x(t) = 3.4445 - 2.2872

x(t)  = 1.1573 m

At t = 0.83; x = 1.1573 m

Therefore, since the value of x at t = 0.83s is 1.1573m is greater than the value of x at t = 0 which is 0m, then the time at which the position is at maximum is 0.83s

(d) The velocity will be zero when the position is maximum. That means that, it will take the same time calculated in (c) above for the velocity to be zero. i.e t = 0.83s

(e) The maximum position function is found when t = 0.83s as shown in (c) above;

Substitute t = 0.83s into equation (i)

x(t) = 5.0(0.83)² - 4.0(0.83)³

x(t) = 5.0(0.6889) - 4.0(0.5718)

x(t) = 3.4445 - 2.2872

x(t)  = 1.1573 m            [where t = 0.83s]

8 0
2 years ago
Determine the number of unpaired electrons in the octahedral coordination complex [fex6]3–, where x = any halide.
juin [17]
There will be four unpaired electrons
The metal complex is [FeX₆]³⁻
X being the halogen ligand 
X = F, CL, Br, and I
The oxidation of metal state is +3
The ground state configuration is
₂₆Fe =Is² 2s²2p⁶ 3s² 3p⁶ 3d⁶ 4s²
Metal, Fe(III) ion electron configures
₂₆Fe³⁺ = Is2 2s² 2p⁶ 3s² 3p⁶ 3d⁵
3 0
2 years ago
Other questions:
  • Water is projected from two rubber pipes at the same speed from one at an angle of 30°and from the other at 60°.why are the rang
    6·1 answer
  • A small smooth object slides from rest down a smooth inclined plane inclined at 30 degrees to the horizontal. What is (i) the ac
    10·1 answer
  • Which vector has a y-component with a length of 1?
    11·2 answers
  • There is a 120 V circuit in a house that is a dedicated line for the dishwasher, meaning the dishwasher is the only resistor on
    12·2 answers
  • A horizontal water jet strikes a stationary vertical plate at a rate of 5 kg/s with a velocity of 35 km/hr. Assume that the wate
    15·1 answer
  • ou purchase a rectangular piece of metal that has dimen- sions 5.0 * 15.0 * 30.0 mm and mass 0.0158 kg. The seller tells you tha
    11·1 answer
  • A high-jumper, having just cleared the bar, lands on an air mattress and comes to rest. Had she landed directly on the hard grou
    14·1 answer
  • The human head weighs 4.8 kg and its center of mas 1.8 cm in front of the spinal column joint. If the trapezius muscle inserts 1
    6·2 answers
  • A water park is designing a new water slide that finishes with the rider flying horizontally off the bottom of the slide. The sl
    6·1 answer
  • A car has a crumple zone that is 0.80 m (80 cm) long. In this car, the distance from the dummy to the steering wheel is 0.50 m.
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!