Answer:
Option 3.
Step-by-step explanation:
A parallelogram is said to be a rectangle if
1. Opposite pair of lines are equal and parallel
2. Adjacent lines meet each other at 90 degrees.
Hence we have third option which satisfies both the conditions.
Both problems give you a function in the second column and the x-values. To find out the values of a through f, you need to plug in those x-values into the function and simplify!
You need to know three exponent rules to simplify these expressions:
1)
The
negative exponent rule says that when a
base has a negative exponent, flip the base onto the other side of the
fraction to make it into a positive exponent. For example,

.
2)
Raising a fraction to a power is the same as separately raising the numerator and denominator to that power. For example,

.
3) The
zero exponent rule<span> says that any number
raised to zero is 1. For example,

.
</span>
Back to the Problem:
Problem 1
The x-values are in the left column. The title of the right column tells you that the function is

. The x-values are:
<span>
1) x = 0</span>Plug this into

to find letter a:

<span>
2) x = 2</span>Plug this into

to find letter b:

<span>
3) x = 4</span>Plug this into

to find letter c:

<span>
Problem 2
</span>The x-values are in the left column. The title of the right column tells you that the function is

. The x-values are:
<span>
1) x = 0</span>Plug this into

to find letter d:

<span>
2) x = 2
</span>Plug this into

to find letter e:

<span>
3) x = 4
</span>Plug this into

to find letter f:

<span>
-------
Answers: a = 1b = </span>

<span>
c = </span>
d = 1e =
f =
What kind of soup needs milk? I don't know any...
anyway, the amount of the liquid at the end was 2 5/8 and milk was 1 1/3 - we need to substract the amount of milk from the amount of total liquid afterwards:

bring the fraction to the same form:

substracting:

which is also the answer
Answer:
A + B + C = π ...... (1)
...........................................................................................................
L.H.S.
= ( cos A + cos B ) + cos C
= { 2 · cos[ ( A+B) / 2 ] · cos [ ( A-B) / 2 ] } + cos C
= { 2 · cos [ (π/2) - (C/2) ] · cos [ (A-B) / 2 ] } + cos C
= { 2 · sin( C/2 ) · cos [ (A-B) / 2 ] } + { 1 - 2 · sin² ( C/2 ) }
= 1 + 2 sin ( C/2 )· { cos [ (A -B) / 2 ] - sin ( C/2 ) }
= 1 + 2 sin ( C/2 )· { cos [ (A-B) / 2 ] - sin [ (π/2) - ( (A+B)/2 ) ] }
= 1 + 2 sin ( C/2 )· { cos [ (A-B) / 2 ] - cos [ (A+B)/ 2 ] }
= 1 + 2 sin ( C/2 )· 2 sin ( A/2 )· sin( B/2 ) ... ... ... (2)
= 1 + 4 sin(A/2) sin(B/2) sin(C/2)
= R.H.S. ............................. Q.E.D.
...........................................................................................................
In step (2), we used the Factorization formula
cos x - cos y = 2 sin [ (x+y)/2 ] · sin [ (y-x)/2 ]
Step-by-step explanation:
For this case we have the following expression:

The first step is to solve the quadratic term.
We have then:

Then, the second step is to subtract both resulting numbers:

We observe that the result obtained is a negative number.
Answer:
The result of the expression is given by:
