Using ideal gas equation,
P\times V=n\times R\times T
Here,
P denotes pressure
V denotes volume
n denotes number of moles of gas
R denotes gas constant
T denotes temperature
The values at STP will be:
P=100 kPa
T=293 K
R=8.314472 L kPa K⁻¹ mol⁻¹
Number of moles of gas=3.43 mole
Putting all the values in the above equation,

V=83.55 L
So the volume will be 83.55 L.
83.55 L of radon gas would be in 3.43 moles at room temperature and pressure (293 K and 100 kPa).
The statement of the combined gas law for a fixed amount of gas is,
PV/T = constant
Here, the units of pressure and volume must be consistent and the temperature must be the absolute temperature (Kelvin or Rankine).
0.65 atm is equivalent to 494 mmHg
Using the equation:
(755 x 500) / (27 + 273) = (494 x V) / (-33 + 273)
V = 3396 ml = 3.4 liters
Answer:
The true statement is option A.
Explanation:
Using ideal gas equation:
PV = nRT
where,
P = Pressure of gas = 1 atm
V = Volume of gas = ?
n = number of moles of gas = 1 mol
R = Gas constant = 0.0821 L.atm/mol.K
T = Temperature of gas = 273.15 K

V = 22.42 L
This means that 1 mole of an ideal gas at STP occupies 22.42 liters of volume.
So, 1 mole of helium gas and 1 mole of oxygen gas will have same value of volume in their respective balloons at STP.
Answer:
By visiting other households with cats.
Explanation:
This will give Brian a variety of other houses and determine if it is truly cats or just alleries from other items. This is the most direct way to get Brian the answer he is looking for.