Answer:
C₂H₇F₂P
Explanation:
Given parameters:
Composition by mass:
C = 24%
H = 7%
F = 38%
P = 31%
Unknown:
Empirical formula of compound;
Solution :
The empirical formula is the simplest formula of a compound. To solve for this, follow the process below;
C H F P
% composition
by mass 24 7 38 31
Molar mass 12 1 19 31
Number of
moles 24/12 7/1 38/19 31/31
2 7 2 1
Dividing
by the
smallest 2/1 7/1 2/1 1/1
2 7 2 1
Empirical formula C₂H₇F₂P
1) Chemical equation
Cu + 2AgNO3 ---> Cu (NO3)2 + 2Ag
2) molar ratios
1 mol Cu: 2 moles AgNO3 : 1 mol Cu (NO3)2 : 2 mol Ag
3) Convert 12. 83 * 10^23 atoms of Cu in moles
12.83 * 10 ^ 23 atoms / (6.02 * 10^23 atoms / mol) = 2.131 mol Cu
4) Use the proportions
2.131 mol Cu * 2 mol Ag / 1 mol Cu = 4.262 mol Ag
5) Use the atomic mass of silver to convert 4.262 mol in grams
mass = number of moles * atomic mass = 4.262 mol * 107.9 g / mol = 459.9 grams
Answer: 459.9 g
The model would look something like the image below.
There would be a <em>central nucleus</em> containing <em>20 protons</em> and <em>20 neutrons</em>.
Surrounding the nucleus would be four concentric rings (energy levels) containing <em>20 electron</em>s.
Going out from the nucleus, the number of electrons in each ring would
be <em>2, 8, 8, 2</em>.
Answer:
34.2 g is the mass of carbon dioxide gas one have in the container.
Explanation:
Moles of
:-
Mass = 49.8 g
Molar mass of oxygen gas = 32 g/mol
The formula for the calculation of moles is shown below:
Thus,

Since pressure and volume are constant, we can use the Avogadro's law as:-
Given ,
V₂ is twice the volume of V₁
V₂ = 2V₁
n₁ = ?
n₂ = 1.55625 mol
Using above equation as:
n₁ = 0.778125 moles
Moles of carbon dioxide = 0.778125 moles
Molar mass of
= 44.0 g/mol
Mass of
= Moles × Molar mass = 0.778125 × 44.0 g = 34.2 g
<u>34.2 g is the mass of carbon dioxide gas one have in the container.</u>