answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Yuliya22 [10]
2 years ago
12

A package is dropped from a helicopter moving upward at 1.5 m/s. If it takes 16.0 s before the package strikes the ground, how h

igh above the ground was the package when it was released if air resistance is negligible?
Physics
1 answer:
pashok25 [27]2 years ago
8 0
Well we know acceleration from free fall due to gravity is 9.8m/s^2

Lay out

S = displacement is what we need

U

V = 1.5m/s

A = 9.8m/s2

T = 16.0s

Use the equation s=vt-1/2at^2

Where a = acceleration t= time and v= velocity

Sub in the values to get displacement or height from ground

= -1230.4 metres which would be positive as you’re measuring distance (scalar quantity) so it’s 1230.4 metres
You might be interested in
For some metal alloy, a true stress of 345 MPa (50040 psi) produces a plastic true strain of 0.02. How much will a specimen of t
Juliette [100K]

Answer:

24.348mm

Explanation:

NB: I'll be attaching pictures so as to depict missing mathematical expressions or special characters which are not easily found on keyboards

K = d / €^n

Note : d represents the greek alphabet epsilion.

K = 345 / 0.02⁰.²² = 816mPa

The true strain based upon the stress of 414mPa =

€= (€/k)^1/n = (414/816)¹/⁰.²² = 0.04576

However the true relationship between true strain and length is given by

€ = ln(Li/Lo)

Making Li the subject of formula by rearranging,

Li = Lo.e^€

Li = 520e⁰.⁰⁴⁵⁷⁶

Li = 544.348mm

The amount of elongation can be calculated from

Change in L = Li - Lo = 544.348 - 520 change in L = 24.348mm.

8 0
2 years ago
2. If a cyclist in the Tour de France traveled southwest a distance of 12,250 meters in one hour, what would the velocity of the
Luda [366]
  • Answer:

<em>12,25 km/h</em>

<em>≈ 3,4 m/s </em>

  • Explanation:

<em>v = d/t</em>

<em>= 12250m/h</em>

<em>= 12,25km/h</em>

<em>or</em>

<em>v = d/t</em>

<em>= 12250m/h</em>

<em>1h = 60m×60s = 3600s</em>

<em>= 12250m/3600s</em>

<em>≈ 3,4 m/s </em>

5 0
2 years ago
You are sitting in your car at rest at a traffic light with a bicyclist at rest next to you in the adjoining bicycle lane. As so
grigory [225]

Answer:

Explanation:

Time duration during which acceleration exists in  bicycle =

23 / 12 = 1.91 s

Time duration during which acceleration exists in car

= 47 / 8 = 5.875 s

Distance covered by bicycle during acceleration ( t = 1.91 s )

= 1/2 x 12 x (1.91)²

= 21.88 mi

Distance covered by car during this time ( t = 1.91 s )

= 1/2 x 8 x (1.91)²

7.64 mi ,

velocity of car after 1.91 s

= 8 x 1.91 = 15.28 mi/h

Let after time 1.91 , time taken by them to meet each other be t

Total distance covered by cycle = total distance covered by car

21.88 + 23 t = 7.64 + 15.28t + 4 t²

21.88 = 7.64 - 7.72t +4 t²

4 t² -7.72 t -14.24 = 0

t = 2.83 s

Total time taken

= 2.83 + 1.91

= 4.74 s

So after 4.74 s they will meet each other.

b ) Maximum distance occurs when velocity of both of them becomes equal .

Velocity after 1.91 s of bicycle

12 x 1.91 = 23 mi/h

Velocity after 1.91 s of car

8 x 1.91 = 15.28 mi/h . Let after time t , the velocity of car becomes 23

15.28 + 8t = 23

t = .965 s

So after time .965 s , car has velocity equal to that of bicycle.

The bicycle will travel a distance of

= 21.88 + .965 x 23 = 44.075 mi

car will travel a distance of

7.64 + 15.28 x .965 + .5 x 8 x .965²

= 7.64 + 14.75 + 3.72

= 26.11 mi

Distance between car and bicycle

= 44.075 - 26.11 = 17.965 mi

= 17.965 x 1760

= 31618.4 ft.

5 0
2 years ago
An organ pipe open at both ends has a radius of 4.0 cm and a length of 6.0 m. what is the frequency (in hz) of the third harmoni
Marysya12 [62]

When air is blown into the open pipe,

L = \frac{nλ}{2}

where nis any integral number 1,2,3,4 etc. and λ is the wavelength of the oscillation

⇒λ=\frac{2L} {n}

Note here that n=1 is for fundamental, n=2 is first harmonic and so on..

⇒ third harmonic will be n=4

Given L=6m, n=4, solving for λ we get:

λ=\frac{(2)*(6)}{4} =3m

Relationship of frequency(f), velocity of sound (c) and wavelength(λ) is:

c=f.λ Or f= \frac{c}{λ}

⇒f=\frac{344}{3}

≈115 Hz

8 0
2 years ago
A spring stores 10. joules of elastic potential
Mekhanik [1.2K]
The answer would be . Since we are looking for the spring constant you would need to use the formula
PEs =  \frac{1}{2} k {x}^{2}
. Then you'd substitute, for PEs and x.
10j=1/2k(.20m^2).
Then solve. k=500n/m
6 0
2 years ago
Read 2 more answers
Other questions:
  • a driver shifts into neutral when her 1200 kg is moving at 80 km/h and finds the speed has dropped to 65 km/h 10 s later . what
    9·1 answer
  • The wavelength of red light is 650 nanometers. how much bigger is the wavelength of a water wave that measures 2 meters?
    7·2 answers
  • Two blocks a and b ($m_a&gt;m_b$) are pushed for a certain distance along a frictionless surface. how does the magnitude of the
    7·1 answer
  • Two satellites, X and Y, are orbiting Earth. Satellite X is 1.2 × 106 m from Earth, and Satellite Y is 1.9 × 105 m from Earth. W
    13·2 answers
  • 2. A pebble is dropped down a well and hits the water 1.5 s later. Using the equations for motion with constant acceleration, de
    14·1 answer
  • On a horizontal frictionless floor, a worker of weight 0.900 kN pushes horizontally with a force of 0.200 kN on a box weighing 1
    7·1 answer
  • The Moon and Earth rotate about their common center of mass, which is located about RcM 4700 km from the center of Earth. (This
    7·1 answer
  • You are driving along a highway at 35.0 m/s when you hear the siren of a police car approaching you from behind at constant spee
    14·1 answer
  • pitot tube on an airplane flying at a standard sea level reads 1.07 x 105 N/m2. What is the velocity of the airplane?
    15·1 answer
  • A disk of radius R (Fig. P25.73) has a nonuniform surface charge density s 5 Cr, where C is a constant and r is measured from th
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!