answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vlabodo [156]
2 years ago
13

Two satellites, X and Y, are orbiting Earth. Satellite X is 1.2 × 106 m from Earth, and Satellite Y is 1.9 × 105 m from Earth. W

hich best compares the satellites? Satellite X has a greater period and a faster tangential speed than Satellite Y. Satellite X has a greater period and a slower tangential speed than Satellite Y. Satellite X has a shorter period and a faster tangential speed than Satellite Y. Satellite X has a shorter period and a slower tangential speed than Satellite Y.
Physics
2 answers:
Mashcka [7]2 years ago
8 0

Answer:

B

Explanation:

jenyasd209 [6]2 years ago
4 0

Answer: Satellite X has a greater period and a slower tangential speed than Satellite Y

Explanation:

According to Kepler’s Third Law of Planetary motion “The square of the orbital period of a planet is proportional to the cube of the semi-major axis (size) of its orbit”.

T^{2}=\frac{4\pi^{2}}{GM}r^{3}    (1)

Where;

G=6.674(10)^{-11}\frac{m^{3}}{kgs^{2}} is the Gravitational Constant

M=5.972(10)^{24}kg is the mass of the Earth

r  is the semimajor axis of the orbit each satellite describes around Earth (assuming it is a circular orbit, the semimajor axis is equal to the radius of the orbit)

So for satellite X, the orbital period T_{X} is:

T_{X}^{2}=\frac{4\pi^{2}}{GM}r_{X}^{3}    (2)

Where r_{X}=1.2(10)^{6}m

T_{X}^{2}=\frac{4\pi^{2}}{(6.674(10)^{-11}\frac{m^{3}}{kgs^{2}})(5.972(10)^{24}kg)}(1.2(10)^{6}m)^{3}    (3)

T_{X}=413.712 s    (4)

For satellite Y, the orbital period T_{Y} is:

T_{Y}^{2}=\frac{4\pi^{2}}{GM}r_{Y}^{3}    (5)

Where r_{Y}=1.9(10)^{5}m

T_{Y}^{2}=\frac{4\pi^{2}}{(6.674(10)^{-11}\frac{m^{3}}{kgs^{2}})(5.972(10)^{24}kg)}(1.9(10)^{5}m)^{3}    (6)

T_{Y}=26.064 s    (7)

This means T_{X}>T_{Y}

Now let's calculate the tangential speed for both satellites:

<u>For Satellite X:</u>

V_{X}=\sqrt{\frac{GM}{r_{X}}} (8)

V_{X}=\sqrt{\frac{(6.674(10)^{-11}\frac{m^{3}}{kgs^{2}})(5.972(10)^{24}kg)}{1.2(10)^{6}m}}

V_{X}=18224.783 m/s (9)

<u>For Satellite Y:</u>

V_{Y}=\sqrt{\frac{GM}{r_{Y}}} (10)

V_{Y}=\sqrt{\frac{(6.674(10)^{-11}\frac{m^{3}}{kgs^{2}})(5.972(10)^{24}kg)}{1.9(10)^{5}m}}

V_{Y}= 45801.13 m/s (11)

This means V_{Y}>V_{X}

Therefore:

Satellite X has a greater period and a slower tangential speed than Satellite Y

You might be interested in
A helicopter flies 250 km on a straight path in a direction 60° south of east. The east component of the helicopter’s displaceme
GaryK [48]

Given that,

Distance in south-west direction = 250 km

Projected angle to east = 60°

East component = ?

since,

cos ∅ = base/hypotenuse

base= hyp * cos ∅

East component = 250 * cos 60°

East component = 125 km

8 0
2 years ago
Read 2 more answers
A rocket moves upward, starting from rest with an acceleration of +29.4 for 3.98 s. it runs out of fuel at the end of the 3.98 s
topjm [15]
U = 0, initial upward speed
a = 29.4 m/s², acceleration up to 3.98 s
a = -9.8 m/s², acceleration after 3.98s

Let h₁ =  the height at time t, for t ≤ 3.98 s
Let h₂ =  the height at time t > 3.98 s

Motion for  t ≤ 3.98 s:
h₁ = (1/2)*(29.4 m/s²)*(3.98 s)² = 232.854 m
Calculate the upward velocity at t = 3.98 s
v₁ = (29.4 m/s²)*(3.98 s) = 117.012 m/s

Motion for t  > 3.98 s
At maximum height, the upward velocity is zero.
Calculate the extra distance traveled before the velocity is zero.
(117.012 m/s)² + 2*(-9.8 m/s²)*(h₂ m) = 0
h₂ = 698.562 m

The total height is
h₁ + h₂ = 232.854 + 698.562 = 931.416 m

Answer: 931.4 m (nearest tenth)

6 0
2 years ago
Read 2 more answers
A 4.50-kg wheel that is 34.5 cm in diameter rotates through an angle of 13.8 rad as it slows down uniformly from 22.0 rad/s to 1
Mila [183]

Answer:

-10.9 rad/s²

Explanation:

ω² = ω₀² + 2α(θ - θ₀)

Given:

ω = 13.5 rad/s

ω₀ = 22.0 rad/s

θ - θ₀ = 13.8 rad

(13.5)² = (22.0)² + 2α (13.8)

α = -10.9 rad/s²

6 0
2 years ago
Read 2 more answers
you want to compare brands of paper towels to see which holds the most liquid. the independent variable in your experiment would
Kazeer [188]

Answer: the brand of paper towel

Explanation: the independent variable is the one you control in an experiment. the dependent variable would be the amount of water in the paper towel

5 0
2 years ago
) a charge of 6.15 mc is placed at each corner of a square 0.100 m on a side. determine the magnitude and direction of the force
Nana76 [90]
Because charges are positioned on a square the force acting on one charge is the same as the force acting on all others. 
We will use superposition principle. This means that force acting on the charge is the sum of individual forces. I have attached the sketch that you should take a look at.
We will break down forces on their x and y components:
F_x=F_3+F_2cos(45^{\circ})
F_y=F_1+F_2sin(45^{\circ})
Let's figure out each component:
F_1=\frac{1}{4\pi \epsilon}\frac{q^2}{a^2}\\&#10;F_3=\frac{1}{4\pi \epsilon}\frac{q^2}{a^2}\\
F_2=\frac{1}{4\pi \epsilon}\frac{q^2}{(\sqrt{2}a)^2}
Total force acting on the charge would be:
F=\sqrt{F_x^2+F_y^2}
We need to calculate forces along x and y axis first( I will assume you meant micro coulombs, because otherwise we get forces that are huge).
F_x=F_3+F_2cos(45^{\circ})=\frac{1}{4\pi \epsilon}\frac{q^2}{a^2}+\frac{1} {4\pi \epsilon}\frac{q^2}{(\sqrt{2}a)^2}\cdot\cos(45)=46N
F_y=\frac{1}{4\pi \epsilon}\frac{q^2}{(\sqrt{2}a)^2}\cdot sin(45)+\frac{1}{4\pi \epsilon}\frac{q^2}{a^2}=46N
Now we can find the total force acting on a single charge:
F=\sqrt{F_x^2+F_y^2}=\sqrt{46^2+46^2}=65N
As said before, intensity of the force acting on charges is the same for all of them.

5 0
2 years ago
Other questions:
  • Type the correct answer in each box. Use numerals instead of words. If necessary, use / for the fraction bar(s).
    8·2 answers
  • A transmission channel is made up of three sections. The first section introduces a loss of 16dB, the second an amplification (o
    12·1 answer
  • A projectile was launched horizontally with a velocity of 468m/s, 1.86m above the ground how long did it take the projectile to
    7·1 answer
  • A beam of unpolarized light shines on a stack of five ideal polarizers, set up so that the angles between the polarization axes
    12·1 answer
  • A crate is lifted vertically 1.5 m and then held at rest. The crate has weight 100 N (i.e., it is reese (enr647) – HS OnRamps 04
    5·2 answers
  • A 6.0-cm-diameter, 11-cm-long cylinder contains 100 mg of oxygen (O2) at a pressure less than 1 atm. The cap on one end of the c
    6·1 answer
  • You are boiling pasta and absentmindedly grab a copper stirring spoon rather than your wooden spoon. The copper spoon has a 20 m
    12·1 answer
  • A student on a skateboard is moving at a speed of 1.40 m/s at the start of a 2.15 m high and 12.4 m long incline. The total mass
    9·1 answer
  • 4. A cylindrical tube has a length of 14.4cm and a radius of 1.5cm and is filled with a colorless gas. If the density of the gas
    12·1 answer
  • if a net horizontal force of 175 N is applied to a bike whos mass is 43 kg what acceleration is produced
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!