Answer:
The correct relationships are T-fg=ma and L-fg=0.
(A) and (C) is correct option.
Explanation:
Given that,
Weight Fg = mg
Acceleration = a
Tension = T
Drag force = Fa
Vertical force = L
We need to find the correct relationships
Using balance equation
In horizontally,
The acceleration is a
...(I)
In vertically,
No acceleration
Put the value of mg
....(II)
Hence, The correct relationships are T-fg=ma and L-fg=0.
(A) and (C) is correct option.
Answer:
<h2><em>V(water)= 237 mL=237×10^-6 m^3</em></h2><h2><em>ρ(water)=1000 kg/m^3</em></h2><h2><em>
m=</em><em>ρ×V=(1000)×(237×10^-6)</em></h2><h2><em>
m= 237×10^-3 = 0.237 kg</em></h2><h2><em>
m= 237 gram.</em></h2>
Answer:
0.000003782 m
0.000001891 m
0.000001197125 m
Explanation:
= Wavelength = 248 nm
D = Diameter of beam = 1 cm
f = Focal length = 0.625 cm
The angle is given by

The width is given by

The required width is 0.000003782 m
Minimum resolvable line separation is given by

The minimum resolvable line separation between adjacent lines is 0.000001891 m
when 

The new minimum resolvable line separation between adjacent lines is

Answer:


Explanation:
Given:
- width of door,

- height of the door,

- thickness of the door,

- mass of the door,

- torque on the door,

<em>∵Since the thickness of the door is very less as compared to its other dimensions, therefore we treat it as a rectangular sheet.</em>
- For a rectangular sheet we have the mass moment of inertia inertia as:



We have a relation between mass moment of inertia, torque and angular acceleration as:


