answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oduvanchick [21]
2 years ago
12

A positive charge moves in the direction of an electric field. Which of the following statements are true?

Physics
2 answers:
Julli [10]2 years ago
4 0

Answer:

The potential energy associated with the charge decreases

The electric field does positive work on the charge.

Gre4nikov [31]2 years ago
3 0

Answer:

The potential enwrgy associated with charge decreases.

The ele ric field does negative work on the charge.

Explanation:

You might be interested in
A runner has a momentum of 720 kg m/s and is traveling at a velocity of 5 m/s. What is his mass?
antiseptic1488 [7]
I could be wrong, but I'm pretty sure it's 144kg.
8 0
2 years ago
Read 2 more answers
Ricardo and Jane are standing under a tree in the middle of a pasture. An argument ensues, and they walk away in different direc
Advocard [28]

Answer:

the direction that should be walked by Ricardo to go directly to Jane is 23.52 m, 24° east of south

Explanation:

given information:

Ricardo walks 27.0 m in a direction 60.0 ∘ west of north, thus

A= 27

Ax =  27 sin 60 = - 23.4

Ay = 27 cos 60 = 13.5

Jane walks 16.0 m in a direction 30.0 ∘ south of west, so

B = 16

Bx = 16 cos 30 = -13.9

By = 16  sin 30 = -8

the direction that should be walked by Ricardo to go directly to Jane

R = √A²+B² - (2ABcos60)

   = √27²+16² - (2(27)(16)(cos 60))

   = 23.52 m

now we can use the sines law to find the angle

tan θ = \frac{R_{y} }{R_{x} }

         = By - Ay/Bx -Ax

         = (-8 - 13.5)/(-13.9 - (-23.4))

     θ  = 90 - (-8 - 13.5)/(-13.9 - (-23.4))

         = 24° east of south

4 0
2 years ago
A pitcher throws a 0.15 kg baseball so that it crosses home plate horizontally with a speed of 10 m/s. It is hit straight back a
Maru [420]

Answer:

-5.1 kg m/s

Explanation:

Impulse is the change in momentum.

Change in momentum= final momentum - initial momentum=mv_{2} +mv_{1}

Plugging in the values= -0.15*24 - (0.15*10) (The motion towards the pitcher is negative as the initial motion is considered to be positive)

Impulse=-5.1 kg m/s (-ve means that it is the impulse towards the pitcher)

4 0
2 years ago
A -4.00 nC point charge is at the origin, and a second -5.50 nC point charge is on the x-axis at x = 0.800 m.
mafiozo [28]

Answer:

a. f=1.22*10^{-15} N

b. f=53.6*10^{-17} N

Explanation:

The force existing between two charges is given as

f=\frac{kq_{1}q_{2}}{r^{2}}

where q= charge,

k=constant

r= distance between the two charges

Note: this force can either be repulsive or attractive force depending on the charges involve. it is repulsive if they are similar charge and it is attractive if it is opposite charges.

Also the charge of an electron is

-1.602*10^{-19}

A. we first determine the magnitude force between the -4nC and the electron

f_{21}=\frac{kq_{1}q_{2}}{r^{2}}\\f_{21}=\frac{9*10^{10} 4*10^{-9} *1.602*10^{-19} }{0.2^{2}}\\f_{21}=\frac{57.67*10^{-18} }{0.04}\\f_{21}=1.44*10^{-15}Ni

this force will be repulsive force and it points away from the electron i.e points towards the +ve x-axis

for the -5.50nC the distance between them is 0.600m as can be seen in the diagram the magnitude of the force is

f_{23} =\frac{kq_{1}q_{2}}{r^{2}}\\f_{23}=\frac{9*10^{10} 5.50*10^{-9} *1.602*10^{-19} }{0.6^{2}}\\f_{23}=\frac{79.3*10^{-18} }{0.36}\\f_{23}=-(0.22*10^{-15})N i

this this force will be repulsive force and it points away from the electron i.e points towards the -ve x-axis.

The total net force on the electron is thus

f=f_{21}+f_{23}\\ f=1.44*10^{-15}-0.22*10^{-15}\\  f=1.22*10^{-15} N

b. at  distance of x=1.20m, this is shown on the diagram below (attachment 2)

we first determine the magnitude force between the -4nC and the electron

f_{21}=\frac{kq_{1}q_{2}}{r^{2}}\\f_{21}=\frac{9*10^{10} 4*10^{-9} *1.602*10^{-19} }{1.2^{2}}\\f_{21}=\frac{57.67*10^{-18} }{1.44}\\f_{21}=4.0*10^{-17}Ni

this force will be repulsive force and it points away from the electron i.e points towards the +ve x-axis.

for the -5.50nC the distance between them is 0.4m as can be seen in the diagram the magnitude of the force is

f_{23} =\frac{kq_{1}q_{2}}{r^{2}}\\f_{23}=\frac{9*10^{10} 5.50*10^{-9} *1.602*10^{-19} }{0.4^{2}}\\f_{23}=\frac{79.3*10^{-18} }{0.16}\\f_{23}=49.6*10^{-17}Ni

this this force will be repulsive force and it points away from the electron i.e points towards the +ve x-axis.

The total net force on the electron is thus

f=f_{21}+f_{23}\\ f=4.0*10^{-15}+49.6*10^{-17}\\  f=53.6*10^{-17} N

8 0
2 years ago
If Siobhan hits a 0.25 kg volleyball with 0.5 N of force, what is the acceleration of the ball?
Alekssandra [29.7K]

Answer:

2 meters per second²

Explanation:

8 0
2 years ago
Read 2 more answers
Other questions:
  • A projectile follows a straight-line path instead of a parabolic trajectory. Which could be the launch angle? would it be 90 or
    9·2 answers
  • A person in a boat sees a fish in the water (n = 1.33, the light rays making an angle of 40? relative to the water's surface. wh
    6·1 answer
  • Argelia has a stack of schoolbooks sitting in the backseat of her car. When Argelia makes a sharp right turn, the books slide to
    11·2 answers
  • A student uses a spring scale to exert a horizontal force on a block, pulling the block over a smooth floor. the student repeats
    13·1 answer
  • A weather balloon is filled to a volume of 6000 L while it is on the ground, at a pressure of 1 atm and a temperature
    11·2 answers
  • Sir Lance a Lost new draw bridge was designed poorly and stops at an angle of 20o below the horizontal. Sir Lost and his steed s
    9·1 answer
  • Carry's car has a mass of 1000 kg and its brakes can apply 8000 N of force. If she is driving at 24 m/s and sees something in th
    5·1 answer
  • An airliner of mass 1.70×105kg1.70×105kg lands at a speed of 75.0 m/sm/s. As it travels along the runway, the combined effects o
    5·1 answer
  • A reversible heat engine, operating in a cycle, withdraws thermal energy from a high-temperature reservoir (the temperature of w
    12·1 answer
  • An astronaut holds a rock 100m above the surface of Planet XX. The rock is then thrown upward with a speed of 15m/s, as shown in
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!