answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
cupoosta [38]
2 years ago
8

A particular power source contains a chemical that releases electrons on one side and a chemical that accepts the electrons on t

he other side. This flow of electrons from one side to the other provides power. What power source does this process describe?
A. An electric outlet
B. An electromagnet
C. An electric cord
D. A battery
Chemistry
2 answers:
tresset_1 [31]2 years ago
6 0

Answer:

D) electric generator

Explanation:

because A) an electric motor B) electromagnetism C) an electric reactor D) an electric generator

Darina [25.2K]2 years ago
3 0
I believe the correct answer from the choices listed above is option D. The power that was described is a battery. It <span>is a device consisting of one or more electrochemical cells with external connections provided to power electrical devices. Hope this answers the question. Have a nice day.</span>
You might be interested in
How many moles of calcium chloride (CaCl2) are needed to react completely with 6.2 moles of silver nitrate (AgNO3)? 2AgNO3 + CaC
nexus9112 [7]

Here we have to choose the right option which tells the moles of CaCl₂ will react with 6.2 moles of AgNO₃ in the reaction

2AgNO₃ + CaCl₂→ 2AgCl + Ca(NO₃)₂

6.2 moles of silver nitrate (AgNO₃) will react with B. 3.1 moles of calcium chloride (CaCl₂).

From the reaction: 2AgNO₃ + CaCl₂→ 2AgCl + Ca(NO₃)₂

Thus 2 moles of AgNO₃ reacts with 1 mole of CaCl₂

Henceforth, 6.2 moles of AgNO₃ reacts with \frac{6.2}{2} = 3.1 moles of CaCl₂.

1 mole of CaCl₂ reacts with 2 moles of AgNO₃. Thus-

A. 2.2 moles of CaCl₂ will react with 2.2×2 = 4.4 moles of AgNO₃.

C. 6.2 moles of CaCl₂ will reacts with 6.2×2 = 12.4 moles of AgNO₃.

D. 12.4 moles of CaCl₂ will reacts with 12.4 × 2 = 24.8 moles of AgNO₃

Thus the right answer is 6.2 moles of AgNO₃ will react with 3.1 moles of CaCl₂.

6 0
2 years ago
Water treatment plants commonly use chlorination to destroy bacteria. a byproduct is chloroform (chcl3), a suspected carcinogen
antiseptic1488 [7]
<span>100. ppb of chcl3 in drinking water means  100 g of CHCl3 in 1,000,0000,000 g of water

Molarity, M

M = number of moles of solute / volume of solution in liters

number of moles of solute = mass of CHCl3 / molar mass of CHCl3

molar mass of CHCl3 = 119.37 g/mol

number of moles of solute = 100 g / 119.37 g/mol = 0.838 mol

using density of water = 1 g/ ml => 1,000,000,000 g = 1,000,000 liters

M = 0.838 / 1,000,000 = 8.38 * 10^ - 7 M <----- answer

Molality, m

m = number of moles of solute / kg of solvent

number of moles of solute = 0.838

kg of solvent = kg of water = 1,000,000 kg

m = 0.838 moles / 1,000,000 kg = 8.38 * 10^ - 7 m <----- answer

mole fraction of solute, X solute

X solute = number of moles of solute / number of moles of solution

number of moles of solute = 0.838

number of moles of solution = number of moles of solute + number of moles of solvent

number of moles of solvent = mass of water / molar mass of water = 1,000,000,000 g / 18.01528 g/mol = 55,508,435 moles

number of moles of solution = 0.838 moles + 55,508,435 moles = 55,508,436 moles

X solute = 0.838 / 55,508,435 = 1.51 * 10 ^ - 8 <------ answer

mass percent, %

% = (mass of solute / mass of solution) * 100 = (100g / 1,000,000,100 g) * 100 =

% = 10 ^ - 6 % <------- answer
</span>
7 0
2 years ago
Read 2 more answers
What types of compounds are CaCl2, Cu, C2H6, respectively.
mina [271]

Answer:

Ionic, metal, organic

Explanation:

In this case, we have to analyze each compound:

-) CaCl_2

In this compound, we have a non-metal atom (Cl) and a metal atom (Ca) . So, we will have a high electronegativity difference between these atoms, With this in mind, we will have an ionic bond. Ions can be produced:

CaCl_2~->~Ca^+^2~+~2Cl^-

The cation would be Ca^+^2 and the anion is Cl^-. So, we will have an <u>ionic compound.</u>

-) Cu

In this case, we have a single atom. If we check the periodic table we will find this atom in the transition metals section (in the middle of the periodic table). So, this indicates that Cu (Copper) is a <u>metal.</u>

-) C_2H_6

In this molecule, we have single bonds between carbon and hydrogen. The electronegativity difference between C and H are not high enough to produce ions. So, with this in mind, we will have covalent bonds. This is the main characteristic of <u>organic compounds. </u> (See figure 1)

5 0
2 years ago
A solution contains cr3+ ions. the addition of 0.063 l of 1.50 m naf solution was needed to completely precipitate the chromium
steposvetlana [31]

Cr{3+} + 3 NaF → CrF3 + 3 Na{+} <span>

First calculate the total mols of NaF. 

(0.063 L) x (1.50 mol/L NaF) = 0.0945 mol NaF total </span>

 

Using stoichiometric ratio:

<span>0.0945 mol NaF * (1 mol Cr3+ / 3 mol NaF) * (51.9961 g Cr3+/mol) = 1.6379 g Cr3+</span>
6 0
2 years ago
A student dissolved 4.00 g of Co(NO3)2 in enough water to make 100. mL of stock solution. He took 4.00 mL of the stock solution
mihalych1998 [28]

Answer:

0.08097 grams of nitrate ions are there in the final solution.

Explanation:

Moles of cobalt(II) nitrate ,n= \frac{4.00 g}{245 g/mol}=0.01633 mol

Volume of the cobalt(II) nitrate solution, V = 100.0 mL = 0.1 L

Molarity=\frac{n}{V(L)}

Let the molarity of the solution be M_1

M_1=\frac{0.01633 mol}{0.1 L}=0.1633 M

A students then takes 4 .00 mL of M_1 solution and dilute it to 275 ml.

M_1=0.1633 M

V_1=4.00 mL

M_2=? (molarity after dilution)

V_2=275 mL (after dilution)

M_1V1=M-2V_2

M_2=\frac{M_1V_1}{V_2}=\frac{0.1633 M\times 4.00 mL}{275 mL}=0.002375 M

Molarity of the of solution after dilution is 0.002375 M.

Co(NO_3)_2(aq)\rightarrow Co^{2+}(aq)+2NO_3^{-}(aq)

1 mol of cobalt(II) nitrate gives 2 moles of nitrate ions. Then 0.002375 M solution of cobalt (II) nitrate will give:

[NO_3^{-}]=\frac{2}{1}\times 0.002375 M=0.004750 M

Moles of nitrate ions = n

Volume of the solution = 275 mL = 0.275 L

Molarity of the nitrate ions = [NO_3^{-}]=0.004750 M

[NO_3^{-}]=\frac{n}{0.275 L}

n = 0.001306 mol

Mass of 0.001306 moles of nitrate ions:

0.001306 mol × 62 g/mol= 0.08097 g

0.08097  grams of nitrate ions are there in the final solution.

4 0
2 years ago
Other questions:
  • What is the approximate tangential speed of an object orbiting Earth with a radius of 1.8 × 108 m and a period of 2.2 × 104 s?
    8·2 answers
  • How many moles of hydrogen gas are produced when 0.066 mole of sodium is completely reacted?
    14·2 answers
  • You have 125 g of a certain seasoning and are told that it contains 62.0 g of salt. what is the percentage of salt by mass in th
    6·1 answer
  • Na3X, Enter the group number of X?
    15·2 answers
  • Among these processes, which is the slowest chemical reaction?
    13·2 answers
  • A solution is 0.010 M in each of Pb(NO3)2, Mn(NO3)2, and Zn(NO3)2. Solid NaOH is added until the pH of the solution is 8.50. Whi
    15·1 answer
  • You want to determine ΔH o for the reaction Zn(s) + 2HCl(aq) → ZnCl2(aq) + H2(g) To do so, you first determine the heat capacity
    5·1 answer
  • A student placed 11.5 g of glucose (C6H12O6) in a volumetric flask, added enough water to dissolve the glucose by swirling, then
    12·2 answers
  • The average distance between nitrogen and oxygen atoms is 115 pm in a compound called nitric oxide. What is this distance in mil
    14·1 answer
  • Which events most likely occurred at the boundary between the South American Plate and the Nazca Plate? Check all that apply.
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!