Answer:
Da=(1/4)Db
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.81 m/s²
When s = Da, t = t

When s = Db, t = 2t

Dividing the two equations

Hence, Da=(1/4)Db
Answer:
KE= 1/2mv²
Explanation:
The kinetic energy of a body is the energy possessed by virtue of the body in motion
Given the parameters
m which is the mass of the body
v which is the velocity of the body too
K.E = kinetic energy
The expression for the kinetic energy of a body is given as
KE= 1/2mv²
Answer:
assume nitrogen is an ideal gas with cv=5R/2
assume argon is an ideal gas with cv=3R/2
n1=4moles
n2=2.5 moles
t1=75°C <em>in kelvin</em> t1=75+273
t1=348K
T2=130°C <em>in kelvin</em> t2=130+273
t2=403K
u=пCVΔT
U(N₂)+U(Argon)=0
<em>putting values:</em>
=>4x(5R/2)x(Tfinal-348)=2.5x(3R/2)x(T final-403)
<em>by simplifying:</em>
Tfinal=363K
Answer:
The answer is 26/98 how i did this is i divided them mulitiplyed well i cant really explain it but im pretty dure its right
Explanation:
Answer:
James is correct here as the force of hand pushing upwards is always more than the force of hand pushing down
Explanation:
Here we know that one hand is pushing up at some distance midway while other hand is balancing the weight by applying a force downwards
so here we can say
Upwards force = downwards Force + weight of snow
while if we find the other force which is acting downwards
then for that force we can say that net torque must be balanced
so here we have

so here we have

so here we can say that upward force by which we push up is always more than the downwards force