<em>ANSWER</em>
<u>An increase in relative humidity</u>
<em><u>Could you mark me brainliest plz?</u></em>
When air is blown into the open pipe,
L = 
where nis any integral number 1,2,3,4 etc. and λ is the wavelength of the oscillation
⇒λ=
Note here that n=1 is for fundamental, n=2 is first harmonic and so on..
⇒ third harmonic will be n=4
Given L=6m, n=4, solving for λ we get:
λ=
=3m
Relationship of frequency(f), velocity of sound (c) and wavelength(λ) is:
c=f.λ Or f= 
⇒f=
≈115 Hz
Answer:
The answer is 3.
Explanation:
The answer to this question can be found by applying the right hand rule for which the pointer finger is in the direction of the electron movement, the thumb is pointing in the direction of the magnetic field, so the effect that this will have on the electrons is the direction that the middle finger points in which is right in this example.
So as a result of the magnetic field directed vertically downwards which is at a right angle with the electron beams, the electrons will move to the right and the spot will be deflected to the right of the screen when looking from the electron source.
I hope this answer helps.
Answer:
Rod 1 has greater initial angular acceleration; The initial angular acceleration for rod 1 is greater than for rod 2.
Explanation:
For the rod 1 the angular acceleration is
Similarly, for rod 2

Now, the moment of inertia for rod 1 is
,
and the torque acting on it is (about the center of mass)

therefore, the angular acceleration of rod 1 is


Now, for rod 2 the moment of inertia is


and the torque acting is (about the center of mass)


therefore, the angular acceleration
is


We see here that

therefore

In other words , the initial angular acceleration for rod 1 is greater than for rod 2.
Answer:

(we need the mass of the astronaut A)
Explanation:
We can solve this by using the conservation law of the linear momentum P. First we need to represent every mass as a particle. Also we can simplify this system of particles by considering only the astronaut A with an initial speed
of 0 m/s and a mass
and the IMAX camera with an initial speed
of 7.5 m/s and a mass
of 15.0 kg.
The law of conservation says that the linear momentum P (the sum of the products between all masses and its speeds) is constant in time. The equation for this is:

By the law of conservation we know that
For
(final linear momentum) we need to treat the collision as a plastic one (the two particles stick together after the encounter).
So:

