1000 kcal because you only get 10% of the energy of the thing you eat
Answer:
The correct option is C
Explanation:
The pendulum bob would return at the same time because the initial angle a pendulum bob is dropped does not affect it's period (the time it takes for the pendulum to move back and forth), however the one with a larger angle move faster but would eventually arrive at the same "starting point" due to varying displacements made.
Answer:
λ = 3.2 x 10⁻⁷ m = 320 nm
Explanation:
The relationship between the velocity of electromagnetic waves (UV rays) and the their frequency is:
v = fλ
where,
v = c = speed of the electromagnetic waves (UV rays) = speed of light
c = 3 x 10⁸ m/s
f = frequency of the electromagnetic waves (UV rays) = 9.38 x 10¹⁴ Hz
λ = wavelength of the electromagnetic waves (UV rays) = ?
Therefore, substituting the values in the relation, we get:
3 x 10⁸ m/s = (9.38 x 10¹⁴ Hz)(λ)
λ = (3 x 10⁸ m/s)/(9.38 x 10¹⁴ Hz)
<u>λ = 3.2 x 10⁻⁷ m = 320 nm</u>
So, the radiation of <u>320 nm</u> wavelength is absorbed by Ozone.
All you need to know for this question is Ohm’s Law:
V=IR
I=V/R
R=V/I
So, the answer is (3) Resistance, since it is inversely proportional to Current (I=V/R)
Answer:

Explanation:
Let 'F₁' and 'F₂' be the forces applied by left and right wires on the bar as shown in the diagram below.
Now, the horizontal and vertical components of these forces are:

As the system is in equilibrium, the net force in x and y directions is 0 and net torque about any point is also 0. Therefore,

Now, let us find the net torque about a point 'P' that is just above the center of mass at the upper edge of the bar.
At point 'P', there are no torques exerted by the F₁x and F₂x nor the weight of the bar as they all lie along the axis of rotation.
Therefore, the net torque by the forces
will be zero. This gives,

But, 
Therefore,


We know,

∴