answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ioda
2 years ago
11

A loaded 375 kg toboggan is traveling on smooth horizontal snow at 4.50 m/s when it suddenly comes to a rough region. The region

is 5.40 mlong and reduces the toboggan's speed by 1.20 m/s .
a) What average friction force did the rough region exert on the toboggan?
b) By what percent did the rough region reduce the toboggan's kinetic energy?
c) By what percent did the rough region reduce the toboggan's speed?
Physics
1 answer:
zmey [24]2 years ago
5 0

Answer:

a) The average friction force exerted on the toboggan is 653.125 newtons, b) The rough region reduced the kinetic energy of the toboggan in 92.889 %, c) The speed of the toboggan is reduced in 73.333 %.

Explanation:

a) Given the existence of non-conservative forces (friction between toboggan and ground), the motion must be modelled by means of the Principle of Energy Conservation and the Work-Energy Theorem, since toboggan decrease its speed (associated with  due to the action of friction. Changes in gravitational potential energy can be neglected due to the inclination of the ground. Then:

K_{1} = K_{2} + W_{f}

Where:

K_{1}, K_{2} are the initial and final translational kinetic energies of the tobbogan, measured in joules.

W_{f} - Dissipated work due to friction, measured in joules.

By applying definitions of translation kinetic energy and work, the expression described above is now expanded and simplified:

f\cdot \Delta s = \frac{1}{2}\cdot m \cdot (v_{1}^{2}-v_{2}^{2})

Where:

f - Friction force, measured in newtons.

\Delta s - Distance travelled by the toboggan in the rough region, measured in meters.

m - Mass of the toboggan, measured in kilograms.

v_{1}, v_{2} - Initial and final speed of the toboggan, measured in meters per second.

The friction force is cleared:

f = \frac{m\cdot (v_{1}^{2}-v_{2}^{2})}{2\cdot \Delta s}

If m = 375\,kg, v_{1} = 4.50\,\frac{m}{s}, v_{2} = 1.20\,\frac{m}{s} and \Delta s = 5.40 \,m, then:

f = \frac{(375\,kg)\cdot \left[\left(4.50\,\frac{m}{s} \right)^{2}-\left(1.20\,\frac{m}{s}\right)^{2}\right]}{2\cdot (5.40\,m)}

f = 653.125\,N

The average friction force exerted on the toboggan is 653.125 newtons.

b) The percentage lost by the kinetic energy of the tobbogan due to friction is given by the following expression, which is expanded and simplified afterwards:

\% K_{loss} = \frac{K_{1}-K_{2}}{K_{1}}\times 100\,\%

\% K_{loss} = \left(1-\frac{K_{2}}{K_{1}} \right)\times 100\,\%

\% K_{loss} = \left(1-\frac{\frac{1}{2}\cdot m \cdot v_{2}^{2}}{\frac{1}{2}\cdot m \cdot v_{1}^{2}} \right)\times 100\,\%

\% K_{loss} = \left(1-\frac{v_{2}^{2}}{v_{1}^{2}} \right)\times 100\,\%

\%K_{loss} = \left[1-\left(\frac{v_{2}}{v_{1}}\right)^{2} \right]\times 100\,\%

If v_{1} = 4.50\,\frac{m}{s} and v_{2} = 1.20\,\frac{m}{s}, then:

\%K_{loss} = \left[1-\left(\frac{1.20\,\frac{m}{s} }{4.50\,\frac{m}{s} }\right)^{2} \right]\times 100\,\%

\%K_{loss} = 92.889\,\%

The rough region reduced the kinetic energy of the toboggan in 92.889 %.

c) The percentage lost by the speed of the tobbogan due to friction is given by the following expression:

\% v_{loss} = \frac{v_{1}-v_{2}}{v_{1}}\times 100\,\%

\% v_{loss} = \left(1-\frac{v_{2}}{v_{1}} \right)\times 100\,\%

If v_{1} = 4.50\,\frac{m}{s} and v_{2} = 1.20\,\frac{m}{s}, then:

\% v_{loss} = \left(1-\frac{1.20\,\frac{m}{s} }{4.50\,\frac{m}{s} } \right)\times 100\,\%

\%v_{loss} = 73.333\,\%

The speed of the toboggan is reduced in 73.333 %.

You might be interested in
A hockey puck of mass m1=165 g slides from left to right with an initial velocity of 15.5 m/s. It collides head on with a second
Fynjy0 [20]

Answer:

it may be -6 m/s

Explanation:

3 0
2 years ago
A couch is pushed with a horizontal force of 80 N and moves the couch a
Lapatulllka [165]

Answer:

400 J

Explanation:

Work = force × distance

W = (80 N) (5 m)

W = 400 J

5 0
2 years ago
Read 2 more answers
Draw the vector C⃗ =1.5A⃗ −3B⃗ . The length and orientation of the vector will be graded. The location of the vector is not impo
Nutka1998 [239]
I made the drawing in the attached file.

I included two figures.

The upper figure shows the effect of:

- multiplying vector A times 1.5.
 It is drawn in red with dotted line.

- multiplying vector B times - 3 .
It is drawn in purple with dotted line.

In the lower figure you have the resultant vector: C = 1.5A - 3B.

The method is that you translate the tail of the vector -3B unitl the point of the vector 1,5A, preserving the angles.

Then you draw the arrow that joins the tail of 1,5A with the point of -3B after translation.

The resultant arrow is the vector C and it is drawn in black dotted line.
 
Download pdf
7 0
2 years ago
Read 2 more answers
A capacitor with C = 6.00 μF is fully charged by connecting it to a battery that has emf 50.0 V. The capacitor is disconnected f
Arte-miy333 [17]

Answer:

1.99×10^-4coulombs

Explanation:

The charge (Q) across the resistor the directly proportional to the voltage (V) where capacitance of the capacitor(C) is the proportionality constant. Mathematically, Q = CV

If V is the voltage across the resistor, V = IR (according to ohm's law) where I is the current in the resistor and R is the resistance.

We need to calculate the voltage on the resistor first when 0.18A current is passed through it.

V = 0.18 × 185

V = 33.3Volts

The charge Q on the resistor will be;

Q = CV

Were C = 6.00 μF, V = 33.3

Q= 6×10^-6 ×33.3

Q = 0.0001998

Q= 1.99×10^-4Coulombs

4 0
2 years ago
Seema knows the mass of basketball. What other information is needed to find the balls potential energy
Lelu [443]

Answer: The height (position) of the ball and the acceleration due gravity

Explanation:

In this case we are taking about gravitational potential energy, which is the energy a body or object possesses, due to its position in a gravitational field.  In this sense, this energy depends on the relative height of an object with respect to some point of reference and associated with the gravitational force.  

In the case of the Earth, in which the gravitational field is considered constant, the gravitational potential energy U will be:  

U=mgh  

Where:

m is the mass of the ball

g=9.8 m/s^{2} is the acceleration due gravity (assuming the ball is on the Earth surface)

h is the height (position) of the ball respect to a given point

Note the value of the gravitational potential energy is directly proportional to the height.

8 0
2 years ago
Read 2 more answers
Other questions:
  • Suppose astronomers discover a new planet farther away from the Sun than Earth. How would the day and year of this planet compar
    9·2 answers
  • A superman cyclist rode a bike uphill at 20 miles/hour for two hours. To sustain this constant speed the cyclist was exerting 50
    10·1 answer
  • It takes Venus 225 days to orbit the sun. If the Earth-sun distance is 1.5 × 10^11 m, what
    7·1 answer
  • An object executes simple harmonic motion with an amplitude A. (Use any variable or symbol stated above as necessary.) (a) At wh
    9·1 answer
  • Mo is on a baseball team and hears that a ball thrown at a 45 degree angle from the ground will travel the furthest distance. Ho
    13·1 answer
  • An unusual lightning strike has a vertical portion with a current of –400 A downwards. The Earth’s magnetic field at that locati
    12·1 answer
  • Listed in the Item Bank are key terms and expressions, each of which is associated with one of the columns. Some terms may displ
    15·2 answers
  • A person with normal vision can focus on objects as close as a few centimeters from the eye up to objects infinitely far away. T
    7·1 answer
  • Devise and draw a circuit using a long, straight wire resistor, instead of a decade box, that would allow the study of the varia
    10·1 answer
  • State<br><br> What is the correct order of tasks for washing dishes in a three-compartment sink?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!