We use the given data above to calculate the volume of gasoline that is being burned per minute by commercial airplanes.
Amount burned of 1 commercial airplane = <span>3.9 × 10³ ml of gasoline per second
Number of airplanes = </span><span>5.1 × 10³ airplanes
We calculate as follows:
</span> 3.9 × 10³ ml of gasoline per second / 1 airplane (5.1 × 10³ airplanes)(60 second / 1 min ) = <span>1.2 x 10^9 mL / min</span>
So for number there are 6 possible outcomes nad 5 is one of them so 1/6
He next one there are 2 outcomes and heads is 1 outcome so 1/2
For the next one you have to multiply them together so you get 1/12
And the events are independent because whatever you roll on the die won’t affect the coin(it actually does on a very small scale but I don’t think you go into that much detail for high school maths)
It is hard to say how Faelyn's work shows the polynomial is prime, but it is.
There are no factors of 6*4 = 24 that add to -5, so the polynomial cannot be factored using real numbers.
_____
The expression of suggestion 2 is a different polynomial than the one Faelyn is factoring.
Taking a factor of 2x out of the first group does not help it match the factoring of the second group.
Dividing one or the other of the groups by -1 will not make the binomials the same.
Answer:
1) a. False, adding a multiple of one column to another does not change the value of the determinant.
2) d. True, column-equivalent matrices are matrices that can be obtained from each other by performing elementary column operations on the other.
Step-by-step explanation:
1) If the multiple of one column of a matrix A is added to another to form matrix B then we get: |A| = |B|. Here, the value of the determinant does not change. The correct option is A
a. False, adding a multiple of one column to another does not change the value of the determinant.
2) Two matrices can be column-equivalent when one matrix is changed to the other using a sequence of elementary column operations. Correc option is d.
d. True, column-equivalent matrices are matrices that can be obtained from each other by performing elementary column operations on the other.