answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Valentin [98]
2 years ago
12

Compute P7,2. (Enter an exact number.)

Mathematics
2 answers:
Katarina [22]2 years ago
8 0

Answer:

42

Step-by-step explanation:

The permutation formula is P(n, r) = n! / (n - r)!. We know that n = 7 and r = 2 so we can write:

7! / (7 - 2)!

= 7! / 5!

= 7 * 6 * 5 * 4 * 3 * 2 * 1 / 5 * 4 * 3 * 2 * 1

= 7 * 6 (5 * 4 * 3 * 2 * 1 cancels out)

= 42

Simora [160]2 years ago
3 0

Answer:

\boxed{42}

Step-by-step explanation:

Apply the permutation formula.

P(n,r)=\frac{n!}{ (n-r)!}

P=number \: of \: permutations\\n=total \: number \: of \: objects \: in \: the \: set\\r=number \: of \: choosing \: objects \: from \: the \: set\\

n=7\\r=2

Plug in the values and evaluate.

P(7,2)=\frac{7!}{ (7-2)!}

P(7,2)=\frac{7!}{ (5)!}

P(7,2)=\frac{5040}{120}

P(7,2)=42

You might be interested in
Please help I don't understand this problem. I need to get this done by tonight.
Lapatulllka [165]

Answer:

Step-by-step explanation:

24

4 0
2 years ago
The Great Lakes differ in both their areas (measured in square miles) and their depths. However these two dimensions do not keep
Masteriza [31]

Answer:

The order of Great Lakes according to depth is (descending order): 1. Lake Superior 2. Lake Michigan 3.  Lake Ontario 4. Lake Huron 5. Lake Erie

Step-by-step explanation:

Lake Superior is by far the largest and deepest of the great Lakes. Lake Michigan is exceeded in depth only by Lake Superior, but it is exceeded in area by both Lakes Superior and Huron. Lake Ontario, which is the smallest in area, is deeper than both Lakes Huron and Erie. Lake Erie is larger than Lake Ontario but it is not only shallower than Huron; it is also shallower than Ontario. So, the order of Great Lakes according to depth is (descending order): 1. Lake Superior 2. Lake Michigan 3.  Lake Ontario 4. Lake Huron 5. Lake Erie

3 0
2 years ago
A nationwide sample of influential Republicans and Democrats was asked as a part of a comprehensive survey whether they favored
pickupchik [31]

Answer:

We conclude that there is an equal or larger proportion of Republicans in favor of lowering the standards.

Step-by-step explanation:

<u>The complete question is</u>: A nationwide sample of influential Republicans and Democrats was asked as a part of a comprehensive survey whether they favored lowering environmental standards so that high-sulfur coal could be burned in coal-fired power plants. The results were:

Number sampled: 1,000 (republican) , 800 (democrats)

Number in favor: 200 (republican) , 168 (democrats)

At the 0.02 level of significance, can we conclude that there is a larger proportion of Democrats in favor of lowering the standards? Determine the p-value.

Let p_1 = <u><em>proportion of Republicans in favor of lowering the standards</em></u>.

p_2 = <u><em>proportion of Democrats in favor of lowering the standards</em></u>.

SO, Null Hypothesis, H_0 : p_1 \geq p_2     {means that there is an equal or larger proportion of Republicans in favor of lowering the standards}

Alternate Hypothesis, H_A : p_1 < p_2     {means that there is a larger proportion of Democrats in favor of lowering the standards}

The test statistics that would be used here <u>Two-sample z-test for</u> <u>proportions</u>;

                         T.S. =  \frac{(\hat p_1-\hat p_2)-(p_1-p_2)}{\sqrt{\frac{\hat p_1(1-\hat p_1)}{n_1}+\frac{\hat p_2(1-\hat p_2)}{n_2} } }  ~ N(0,1)

where, \hat p_1 = sample proportion of Republicans in favor of lowering the standards = \frac{200}{1000} = 0.20

\hat p_2 = sample proportion of Democrats in favor of lowering the standards = \frac{168}{800} = 0.21

n_1 = sample of Republicans = 1000

n_2 = sample of Democrats = 800

So, <u><em>the test statistics</em></u>  =  \frac{(0.20-0.21)-(0)}{\sqrt{\frac{0.20(1-0.20)}{1000}+\frac{0.21(1-0.21)}{800} } }

                                     =  -0.52

The value of z test statistics is -0.52.

<u>Now, P-value of the test statistics is given by the following formula; </u>

            P-value = P(Z < -0.52) = 1 - P(Z \leq 0.52)

                          = 1 - 0.6985 = 0.3015

Now, at 0.02 significance level, the z table gives a critical value of -2.054 for left-tailed test.

Since our test statistic is more than the critical value of z as -0.52 > -2.054, so we have insufficient evidence to reject our null hypothesis as it will not fall in the rejection region due to which <em><u>we fail to reject our null hypothesis</u></em>.

Therefore, we conclude that there is an equal or larger proportion of Republicans in favor of lowering the standards.

7 0
2 years ago
Unit 3 parallel and perpendicular lines homework 4 parallel line proofs
Alex17521 [72]

Answer:

1) c ║ d by consecutive interior angles theorem

2) m∠3 + m∠6 = 180° by transitive property

3) ∠2 ≅ ∠5 by definition of congruency

4) t ║ v                                    {}                   Corresponding angle theorem

5) ∠14 and ∠11  are supplementary         {}  Definition of supplementary angles

6) ∠8 and ∠9  are supplementary    {}        Consecutive  interior angles theorem

Step-by-step explanation:

1) Statement                                {}                                     Reason

m∠4 + m∠7 = 180°                                 {}   Given

m∠4 ≅ m∠6                                {}              Vertically opposite angles

m∠4 = m∠6                               {}                Definition of congruency

m∠6 + m∠7 = 180°                                {}    Transitive property

m∠6 and m∠7 are supplementary     {}     Definition of supplementary angles

∴ c ║ d                               {}                       Consecutive interior angles theorem

2) Statement                                {}                                     Reason

m∠3 = m∠8                                 {}           Given

m∠8 + m∠6 = 180°                {}                 Sum of angles on a straight line

∴ m∠3 + m∠6 = 180°               {}               Transitive property

3) Statement                                {}                                     Reason

p ║ q                                 {}                    Given

∠1 ≅ ∠5                               {}                  Given

∠1 = ∠5                               {}                   Definition of congruency

∠2 ≅ ∠1                               {}                  Alternate interior angles theorem

∠2 = ∠1                               {}                   Definition of congruency

∠2 = ∠5                                  {}               Transitive property

∠2 ≅ ∠5                                  {}              Definition of congruency.

4) Statement                                {}                                     Reason

∠1 ≅ ∠5                                  {}                Given

∠3 ≅ ∠4                               {}                  Given

∠1 = ∠5                               {}                   Definition of congruency

∠3 = ∠4                               {}                  Definition of congruency

∠5 ≅ ∠4                               {}                 Vertically opposite angles

∠5 = ∠4                               {}                  Definition of congruency

∠5 = ∠3                                  {}               Transitive property

∠1 = ∠3                                  {}                Transitive property

∠1 ≅ ∠3                                  {}                Definition of congruency.

t ║ v                                    {}                   Corresponding angle theorem

5) Statement                                {}                                     Reason

∠5 ≅ ∠16                                  {}              Given

∠2 ≅ ∠4                               {}                  Given

∠5 = ∠16                               {}                  Definition of congruency

∠2 = ∠4                               {}                   Definition of congruency

EF ║ GH                               {}                  Corresponding angle theorem

∠14 ≅ ∠16                               {}                Corresponding angles

∠14 = ∠16                               {}                 Definition of congruency

∠5 = ∠14                                  {}               Transitive property

∠5 + ∠11 = 180°                {}                       Sum of angles on a straight line

∠14 + ∠11 = 180°                                {}      Transitive property

∠14 and ∠11  are supplementary         {}  Definition of supplementary angles  

6) Statement                                {}                                     Reason

l ║ m                                 {}                      Given

∠4 ≅ ∠7                               {}                  Given

∠4 = ∠7                               {}                   Definition of congruency

∠2 ≅ ∠7                               {}                  Alternate angles

∠2 = ∠7                               {}                   Definition of congruency

∠2 = ∠4                                  {}               Transitive property

∠2 ≅ ∠4                               {}                  Definition of congruency

∠2 and ∠4 are corresponding angles   {} Definition

DA ║ EB                               {}                  Corresponding angle theorem

∠8 and ∠9  are consecutive  interior angles    {} Definition

∠8 and ∠9  are supplementary    {}        Consecutive  interior angles theorem.

6 0
2 years ago
Use green's theorem to compute the area inside the ellipse x252+y2172=1. use the fact that the area can be written as ∬ddxdy=12∫
Pavel [41]

The area of the ellipse E is given by

\displaystyle\iint_E\mathrm dA=\iint_E\mathrm dx\,\mathrm dy

To use Green's theorem, which says

\displaystyle\int_{\partial E}L\,\mathrm dx+M\,\mathrm dy=\iint_E\left(\frac{\partial M}{\partial x}-\frac{\partial L}{\partial y}\right)\,\mathrm dx\,\mathrm dy

(\partial E denotes the boundary of E), we want to find M(x,y) and L(x,y) such that

\dfrac{\partial M}{\partial x}-\dfrac{\partial L}{\partial y}=1

and then we would simply compute the line integral. As the hint suggests, we can pick

\begin{cases}M(x,y)=\dfrac x2\\\\L(x,y)=-\dfrac y2\end{cases}\implies\begin{cases}\dfrac{\partial M}{\partial x}=\dfrac12\\\\\dfrac{\partial L}{\partial y}=-\dfrac12\end{cases}\implies\dfrac{\partial M}{\partial x}-\dfrac{\partial L}{\partial y}=1

The line integral is then

\displaystyle\frac12\int_{\partial E}-y\,\mathrm dx+x\,\mathrm dy

We parameterize the boundary by

\begin{cases}x(t)=5\cos t\\y(t)=17\sin t\end{cases}

with 0\le t\le2\pi. Then the integral is

\displaystyle\frac12\int_0^{2\pi}(-17\sin t(-5\sin t)+5\cos t(17\cos t))\,\mathrm dt

=\displaystyle\frac{85}2\int_0^{2\pi}\sin^2t+\cos^2t\,\mathrm dt=\frac{85}2\int_0^{2\pi}\mathrm dt=85\pi

###

Notice that x^{2/3}+y^{2/3}=4^{2/3} kind of resembles the equation for a circle with radius 4, x^2+y^2=4^2. We can change coordinates to what you might call "pseudo-polar":

\begin{cases}x(t)=4\cos^3t\\y(t)=4\sin^3t\end{cases}

which gives

x(t)^{2/3}+y(t)^{2/3}=(4\cos^3t)^{2/3}+(4\sin^3t)^{2/3}=4^{2/3}(\cos^2t+\sin^2t)=4^{2/3}

as needed. Then with 0\le t\le2\pi, we compute the area via Green's theorem using the same setup as before:

\displaystyle\iint_E\mathrm dx\,\mathrm dy=\frac12\int_0^{2\pi}(-4\sin^3t(12\cos^2t(-\sin t))+4\cos^3t(12\sin^2t\cos t))\,\mathrm dt

=\displaystyle24\int_0^{2\pi}(\sin^4t\cos^2t+\cos^4t\sin^2t)\,\mathrm dt

=\displaystyle24\int_0^{2\pi}\sin^2t\cos^2t\,\mathrm dt

=\displaystyle6\int_0^{2\pi}(1-\cos2t)(1+\cos2t)\,\mathrm dt

=\displaystyle6\int_0^{2\pi}(1-\cos^22t)\,\mathrm dt

=\displaystyle3\int_0^{2\pi}(1-\cos4t)\,\mathrm dt=6\pi

3 0
2 years ago
Other questions:
  • A solid wooden block in the shape of a rectangular prism has a length,width and height of 3/8 cm, 1/8 cm, and 5/8 cm, respective
    7·2 answers
  • The owner of a bike shop sells tricycles (3 wheels) and bicycles (2 wheels), keeping inventory by counting seats and wheels. One
    11·2 answers
  • Paul, Colin and Brian are waiters. One night the restaurant earns tips totalling £77.40. They share the tips in the ratio 2:3:4.
    8·1 answer
  • The Delucci family traveled on the highway for two hours at 70 miles per hour, and then three hours at 35 miles per hour. How fa
    6·1 answer
  • Dan is watching The Birds in his backyard. Of the birds he watches, 9. Of them,or 45%, are sparrows. How many birds are in his b
    9·1 answer
  • A machine called Feynman, produces output, that is 5 times its input followed by an increase of 2. Another machine called Maxwel
    7·2 answers
  • (05.03)Marcus loves baseball and wants to create a home plate for his house. Marcus needs to calculate the area of the home plat
    14·1 answer
  • Find \tan(\alpha)tan(α)tangent, left parenthesis, alpha, right parenthesis in the triangle.
    9·2 answers
  • The table shows the ratio of cups of water to cups of juice needed for a certain number of servings. A 3-column table has 3 rows
    13·2 answers
  • -18 - 6n= 6 (1 + 3n)
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!