answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
RoseWind [281]
2 years ago
12

1.5 kg of air within a piston-cylinder assembly executes a Carnot power cycle with maximum and minimum temperatures of 800 K and

300 K, respectively. The heat transfer from the air during the isothermal compression is 80 kJ. At the end of the isothermal compression, the volume is 0.2 m3. Determine the volume at the beginning of the isothermal compression, in m3. Assume the ideal gas model for air and neglect kinetic and potential energy effects.
Physics
1 answer:
liraira [26]2 years ago
3 0

Answer:

Explanation:

Carton cycle consists of four thermodynamic processes . The first is isothermal expansion at higher temperature , then adiabatic expansion which lowers the temperature of gas . The third process is isothermal compression at lower temperature and the last process is adiabatic compression which increases the temperature of the gas to its original temperature .

So the given process of isothermal compression must have been done at the temperature of 300K  , keeping the temperature constant .

Work done on gas at isothermal compression is equal to heat transfer .

work done on gas = 80 x 10³ J

work done on gas = n RT ln v₁ / v₂

n is number of moles v₁ and v₂ are initial and final volume

molecular weight of gas = 28.97 g

1.5 kg = 1500 / 28.97 moles

= 51.77 moles

work done on gas = n RT ln v₁ / v₂

Putting the values in the equation above

80 x 10³ = 51.78 x 8.31 x 300 x ln v₁ / .2

ln v₁ / .2 = .62

v₁ / .2 = 1.8589

v₁ = 0.37 m³

You might be interested in
A rigid tank contains nitrogen gas at 227 °C and 100 kPa gage. The gas is heated until the gage pressure reads 250 kPa. If the a
aleksley [76]

Answer:

 T₂ =602  °C

Explanation:

Given that

T₁ = 227°C =227+273 K

T₁ =500 k

Gauge pressure at condition 1 given = 100 KPa

The absolute pressure at condition 1 will be

P₁ = 100 + 100 KPa

P₁ =200 KPa

Gauge pressure at condition 2 given = 250 KPa

The absolute pressure at condition 2 will be

P₂ = 250 + 100 KPa

P₂ =350 KPa

The temperature at condition 2 = T₂

We know that

\dfrac{T_2}{T_1}=\dfrac{P_2}{P_1}\\T_2=T_1\times \dfrac{P_2}{P_1}\\T_2=500\times \dfrac{350}{200}\ K\\

T₂ = 875 K

T₂ =875- 273 °C

T₂ =602  °C

5 0
2 years ago
A person who weighs 625 N is riding a 98-N mountain bike. Suppose that the entire weight of the rider and bike is supported equa
kozerog [31]

Answer:

A = 4.76 x 10⁻⁴ m²

Explanation:

given,                                  

weight of the person = 625 N

weight of the bike = 98 N        

Pressure on each Tyre = 7.60 x 10⁵ Pa

Area of contact on each Tyre = ?          

total weight of the system = 625 + 98

                                             = 723 N

Let F be the force on both the Tyre

F + F = W                                    

2 F  = 723                                    

F = 361.5 N                                

F = P A                                            

A = \dfrac{F}{P}                          

A = \dfrac{361.5}{7.60 \times 10^5}

A = 4.76 x 10⁻⁴ m²

7 0
2 years ago
A swimming pool contains x (less than 0.02) grams of chlorine per cubic meter. the pool measures 5 meters by 50 meters and is 2
zubka84 [21]
The solution for this problem would be:(10 - 500x) / (5 - x) 
so start by doing: 
x(5*50*2) - xV + 5V = 0.02(5*50*2) 
500x - xV + 5V = 10 
V(5 - x) = 10 - 500x 
V = (10 - 500x) / (5 - x) 
(V stands for the volume, but leaves us with the expression for x)
3 0
2 years ago
The helicopter in the drawing is moving horizontally to the right at a constant velocity. The weight of the helicopter is W=4900
Sedaia [141]

Answer:

(a) The magnitude of the lift force is 52144.71 N, approximately.

(b) The magnitude of the air resistance force opposing the movement is 17834.54 N, approximately.

Explanation:

Since the helicopter is moving horizontally at a constant velocity, we can assume that the net force acting on it is zero, then

(a) in the vertical direction we have

L\cos(20\deg)-W=0\\L=\frac{W}{\cos(20\deg)}=\frac{49000 N}{\cos(20\deg)}\approx \mathbf{52144.71 N}.

(b) Now horizontally,

L\sin(20\deg)-R=0\\R=L\sin(20\deg)=52144.71 N\times \sin(20\deg) \approx \mathbf{17834.54 N}.

3 0
2 years ago
Your 64-cm-diameter car tire is rotating at 3.5 rev/s when suddenly you press down hard on the accelerator. After traveling 200
andreyandreev [35.5K]

Answer: angular acceleration = 0.748rad/s²

Explanation: according to the question, our answer needs to be in rad/s², thus all units in rev/s will be converted to rad/s

Assuming the motion of the object is of a constant angular acceleration, then newton's laws of motion is applicable.

The formulae below is used

v² = u² + 2αθ

v = final angular speed =6rev/s = 6*2π = 12π rad/s

u =initial angular speed =3.5rev/s = 3.5 *2π = 7π rad/s

Note 1 rev = 2π rad.

α = angular acceleration.

θ = angular displacement.

Diameter = 64cm = 0.64m, radius = 64/2 = 32cm = 0.32m

The angular displacement can be gotten using the formulae below

S = rθ, where s= linear distance covered = 200m, r = radius = 0.32m

θ = S/r = 200/0.32=625 rad.

By substituting the parameter we have that

(12π)² = (7π)² + 2α(625)

1421.22 = 486.31 + 1250α

1421.22 - 486.31 = 1250α

934.91 = 1250α

α = 934.91/1250

α= 0.748 rad/s²

4 0
2 years ago
Other questions:
  • An 80-g particle moving with an initial speed of 50 m/s in the positive x direction strikes and sticks to a 60-g particle moving
    12·1 answer
  • Siska hit a golf ball into the air with an initial velocity of 56 feet per second. The height h in feet of the ball above the gr
    12·2 answers
  • Consider a force of 750 n (roughly the weight of an adult human). over what area (in cm2) would this force need to be applied in
    5·1 answer
  • A 9V battery is directly connected to each of 3 LED bulbs. Select the statement that accurately describes this circuit. A) A dir
    5·2 answers
  • A current of 0.2 A flows through an electric bell having a resistance of 65 ohms. What must be the applied voltage in the circui
    13·1 answer
  • A person drives an automobile with a mass of 450 kilograms at a velocity of 26 meters per second. The driver accelerates to a ve
    5·1 answer
  • A 5⁢kg object is released from rest near the surface of a planet such that its gravitational field is considered to be constant.
    11·1 answer
  • A box of mass M is pushed a distance Δ x across a level floor by a constant applied force F . The coefficient of kinetic frictio
    12·1 answer
  • An electric motor consumes 10.8 kJ of electrical energy in 1.00 min . Part A If one-third of this energy goes into heat and othe
    8·1 answer
  • Before you start taking measurements though, we’ll first make sure you understand the underlying concepts involved. By what meth
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!