answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Artist 52 [7]
2 years ago
8

La fuerza necesaria para evitar que un auto derrape en una curva varía inversamente al radio de la curva y conjuntamente con el

peso del auto y el cuadrado de la velocidad del mismo. Supongamos que 400 libras de fuerza evitan que un auto que pesa 1600 libras derrape en una curva cuyo radio mide 800 si viaja a 50mph. ¿Cuánta fuerza evitaría que el mismo auto derrapara en una curva cuyo radio mide 600 si viaja a 60mph ?
Mathematics
1 answer:
Vika [28.1K]2 years ago
7 0

Answer:

768 libras de fuerza

Step-by-step explanation:

Tenemos que encontrar la ecuación que los relacione.

F = Fuerza necesaria para evitar que el automóvil patine

r = radio de la curva

w = peso del coche

s = velocidad de los coches

En la pregunta se nos dice:

La fuerza requerida para evitar que un automóvil patine alrededor de una curva varía inversamente con el radio de la curva.

F ∝ 1 / r

Y luego con el peso del auto

F ∝ w

Y el cuadrado de la velocidad del coche

F ∝ s²

Combinando las tres variaciones juntas,

F ∝ 1 / r ∝ w ∝ s²

k = constante de proporcionalidad, por tanto:

F = k × w × s² / r

F = kws² / r

Paso 1

Encuentra k

En la pregunta, se nos dice:

Suponga que 400 libras de fuerza evitan que un automóvil de 1600 libras patine alrededor de una curva con un radio de 800 si viaja a 50 mph.

F = 400 libras

w = 1600 libras

r = 800

s = 50 mph

Tenga en cuenta que desde el

F = kws² / r

400 = k × 1600 × 50² / 800

400 = k × 5000

k = 400/5000

k = 2/25

Paso 2

¿Cuánta fuerza evitaría que el mismo automóvil patinara en una curva con un radio de 600 si viaja a 60 mph?

F = ?? libras

w = ya que es el mismo carro = 1600 libras

r = 600

s = 60 mph

F = kws² / r

k = 2/25

F = 2/25 × 1600 × 60² / 600

F = 768 libras

Por lo tanto, la cantidad de fuerza que evitaría que el mismo automóvil patine en una curva con un radio de 600 si viaja a 60 mph es de 768 libras.

You might be interested in
The first three terms of an arithmetic series are 6p+2, 4p²-10 and 4p+3 respectively. Find the possible values of p. Calculate t
Doss [256]

Answer:

First Case:

\displaystyle p=\frac{5}{2}\text{ and } d=-2

Second Case:

\displaystyle p=-\frac{5}{4}\text{ and } d=\frac{7}{4}

Step-by-step explanation:

We know that the first three terms of an arithmetic series are:

6p+2, 4p^2-10, \text{ and } 4p+3

Since this is an arithmetic sequence, each subsequent term is <em>d</em> more than the previous term, where <em>d</em> is our common difference.

Therefore, we can write the second term as;

4p^2-10=(6p+2)+d

And, likewise, for the third term:

4p+3=(6p+2)+2d

Let's solve for <em>d</em> for each of the equations.

Subtracting in the first equation yields:

d=4p^2-6p-12

And for the second equation:

2d=-2p+1

To avoid fractions, let's multiply the first equation by 2. Hence:

2d=8p^2-12p-24

Therefore:

8p^2-12p-24=-2p+1

Simplifying yields:

8p^2-10p-25=0

Solve for <em>p</em>. We can factor:

8p^2+10p-20p-25=0

Factor:

2p(4p+5)-5(4p+5)=0

Grouping:

(2p-5)(4p+5)=0

Zero Product Property:

\displaystyle p_1=\frac{5}{2} \text{ or } p_2=-\frac{5}{4}

Then, we can use the second equation to solve for <em>d</em>. So:

2d_1=-2p_1+1

Substituting:

\begin{aligned} 2d_1&=-2(\frac{5}{2})+1 \\ 2d_1&=-5+1 \\ 2d_1&=-4 \\ d_1&=-2\end{aligned}

So, for the first case, <em>p</em> is 5/2 and <em>d</em> is -2.

Likewise, for the second case:

\begin{aligned} 2d_2&=-2(-\frac{5}{4})+1 \\ 2d_2&=\frac{5}{2}+1 \\ 2d_2&=\frac{7}{2} \\ d_2&=\frac{7}{4}\end{aligned}

So, for the second case, <em>p </em>is -5/4, and <em>d</em> is 7/4.

By using the values, we can determine our series.

For Case 1, we will have:

17, 15, 13.

For Case 2, we will have:

-11/2, -15/4, -2.

8 0
1 year ago
Isabella filled her pool with water at a constant rate.
Anon25 [30]

Answer:

The size of Isabella's pool is 220 liters.

Step-by-step explanation:

Let the size of Isabella's pool be x liters, R be the rate of fill, t be the time of fill and V be the volume of water filled in the pool.

As the rate of fill is constant,

Therefore, volume of water filled in the pool can be given as,

V= Rt

Volume of water left is given as x-V=x-Rt

From the table,

Volume of water left after t=2 minutes is 184 liters.

So, x-R(2)=184\\x-2R=184 -------- 1

Volume of water left after t=12 minutes is 4 liters.

So, x-R(12)=4\\x-12R=4 ------------2

Multiply equation 1 by 6 and equation 2 by -1, we get

6x-12R=1104\\-x+12R=-4

Now, we add the above equations, we get

(6x-x)+(12R-12R)=1104-4\\5x=1100\\x=\frac{1100}{5}=220

Therefore, the size of Isabella's pool is 220 liters.

6 0
2 years ago
A recipe that makes 4 servings calls for Two-thirds cup of flour. How much flour is required to make 20 servings? 6 cups 3 and o
Vlad [161]

Answer:

3 1/3 cups of flour

Step-by-step explanation:

20/4 = 5

20 servings is 5 times 4 servings, so you need 5 times the amount of ingredients.

5 * 2/3 = 10/3 = 3 1/3

Answer: 3 1/3 cups of flour

6 0
2 years ago
Read 2 more answers
the population of a town increases 8% annually if its present population is 126360 , what was it a year ago
Ludmilka [50]
126,360 people is equal to 108% therefore ...

you should divide it by 108 to get 1% : 1,170

and then times by 100 to get 100% : 117000 people


Hope this helps and have a nice day!
8 0
2 years ago
Read 2 more answers
PLEASE HELP ASAP<br> Prove that x+a is a factor of (x+a)^5 + (x+c)^5 + (a-c)^5
Brums [2.3K]

P(x)=(x+a)^5 + (x+c)^5 + (a-c)^5

If x+a is a factor of P(x), then -a is a root of P(x).

Therefore

(-a+a)^5+(-a+c)^5+(a-c)^5=0\\\\0^5+(-1(a-c))^5+(a-c)^5=0\\\\(-1)^5(a-c)^5+(a-c)^5=0\\\\-(a-c)^5+(a-c)^5=0\\\\0=0

6 0
2 years ago
Other questions:
  • Allan is ordering a set of rational numbers that includes positive values, negative values, fractions, and decimal numbers. How
    11·3 answers
  • If a baker doubles a recipe that calls for 6-2/3 cups of flour. How many cups will be needed in all?
    6·2 answers
  • WILL MARK AS BRAINLIEST!!!The chart below lists the original and sale prices of items at a clothing store. Clothing Prices Origi
    13·2 answers
  • In 2013 the median monthly rent for one bedroom apartment in San Francisco was $2,750.the equation below models the median month
    12·1 answer
  • PLEASE HELP: Choose the function whose graph is given by:
    13·1 answer
  • As the number of pages in a photo book increases, the price of the book also increases. There is an additional shipping charge o
    6·1 answer
  • Demand for an electric fan is related to its selling price p (in dollars) by the equation n = 1960 − 70 p where n is the number
    11·1 answer
  • In a park, a sidewalk is built around the edge of a circular garden as shown below. The sidewalk is 5 feet wide, and the garden
    9·1 answer
  • suppose the commute times for employees of a large company follow a normal distribution. if the mean time is 18 minutes and the
    6·2 answers
  • A remote ranch has a cylindrical water storage tank. It has a vertical central axis, a diameter of 16 ft, the sides are 5 ft hig
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!