Answer:
145.83 kilómetros.
Step-by-step explanation:
Si un conductor llena su tanque con $600 y recorre 250 kilómetros, para determinar cuántos kilómetros podrá recorrer con $350 de combustible se debe realizar el siguiente cálculo:
600 = 250
350 = X
350 x 250 / 600 = X
87,500 / 600 = X
145.83 = X
Así, con $350 de combustible se podrán recorrer 145.83 kilómetros.
Step-by-step explanation:
5 log₅ x − ¼ log₅ (8−x)
log₅ x⁵ − log₅ (8−x)^¼
log₅ x⁵ − log₅ ∜(8−x)
log₅ (x⁵ / ∜(8−x))
When a point divides a line segment into ratios of k1:k2, the formula to find the coordiates of the point is:
x=(k2*x1+k1*x2)/(k1+k2), y=(k2*y1+k1*y2)/(k1+k2),
(x1,y1) being the coordinates of the starting point, and (x2,y2) coordinates of the end point.
in this case, 3.6=[2*(-6)+3x2]/5
-12+3x2=18
3x2=30
x2=10
use the same method to find y2: -0.4=(2*5+3y2)/5
3y2=-12
y2=-4
so the the coordinates of B is (10,-4)
use the same method to find the coordinates of D.
the answer I've got for D is (58/9, -2) please double check my calculation.
<span>-Both box plots show the same interquartile range.
>Interquartile range (IQR) is computed by Q3-Q1.
For Mr. Ishimoto's class, Q3 is 35 and Q1 is 31. 35-31 = 4.
For Ms. Castillo's class, Q3 is 34 and Q1 is 30. 34-30 = 4.
</span><span>-Mr. Ishimoto had the class with the greatest number of students.
>Mr. Ishimoto had 40 students, represented by the last data point of the whiskers.
</span><span>-The smallest class size was 24 students.
>Which was Ms. Castillo's class.</span>
Part A) means that we have to find a composition of functions A and m
A(m(t))=π(9t)²=9πt²
part B)
A(m(t))=9πt²
A(m(2))=9*3.14*(2)²=113.04