Answer:
3.1°C
Explanation:
Using freezing point depression expression:
ΔT = Kf×m×i
<em>Where ΔT is change in freezing point, Kf is freezing point depression constant (5.12°c×m⁻¹), m is molality of the solution and i is Van't Hoff factor constant (1 For I₂ because doesn't dissociate in benzene).</em>
Molality of 9.04g I₂ (Molar mass: 253.8g/mol) in 75.5g of benzene (0.0755kg) is:
9.04g ₓ (1mol / 253.8g) = 0.0356mol I₂ / 0.0755kg = 0.472m
Replacing in freezing point depression formula:
ΔT = 5.12°cm⁻¹×0.472m×1
ΔT = 2.4°C
As freezing point of benzene is 5.5°C, the new freezing point of the solution is:
5.5°C - 2.4°C =
<h3>3.1°C</h3>
<em />
Explanation:
It is known that efficiency is denoted by
.
The given data is as follows.
= 0.82,
= (21 + 273) K = 294 K
= 200 kPa,
= 1000 kPa
Therefore, calculate the final temperature as follows.
0.82 =
= 1633 K
Final temperature in degree celsius =
= 
Now, we will calculate the entropy as follows.

For 1 mole, 
It is known that for
the value of
= 0.028 kJ/mol.
Therefore, putting the given values into the above formula as follows.

= 
= 0.0346 kJ/mol
or, = 34.6 J/mol (as 1 kJ = 1000 J)
Therefore, entropy change of ammonia is 34.6 J/mol.
0.355M x 0.0282L= 0.01 moles of H2SO4. Remember sulphuric acid is diprotic so it will release 2 from each molecule.
<span>So moles of protons = 0.01 x 2 = 0.02 moles of H+ </span>
<span>For neutralization: moles H+ = moles OH- </span>
<span>Therefore moles of NaOH = 0.02 </span>
<span>conc = moles / volume </span>
<span>Conc NaOH = 0.02 / 0.025L = 0.8M </span>
Answer:
the double bond between c and o is shorter and weaker
Explanation:
this is because the bond between c and o involves unequal sharing of electrons whole c and c involves hybridization sp2 of orbitals and also catenation phenomenon in which carbon could form long chain with it's other carbon
Answer:
28.52 L
Explanation:
First, let's calculate the density of the ocean, which is the mass divided by the volume:
d = m/V
d = 35.06/1
d = 35.06 g/L
So, for a mass of 1.00 kg = 1000.00 g
d = m/V
35.06 = 1000.00/V
V = 1000.00/35.06
V = 28.52 L
How all the data are expressed with two significant figures, the volume must also be expressed with two.