<span>The instructor should be questioned to see if the filtrate is able to be recycled. This precipitate can contaminate the filtrate, rendering it useless for repeated experiments. If it is able to be recycled, a second pass through the filter might be required to remove the precipitate.</span>
Answer:
NUCLEAR ENERGY -----> MECHANICAL ENERGY -------> THERMAL ENERGY --------> ELECTRICAL ENERGY
Explanation:
In nuclear reactor, various energy transformations occur in order to generate electricity. Nuclear reactor converts the energy released from nuclear fission and the heat generated is removed from the reactor by a cooling system where steam is generated. The steam then drives a turbine which powers a generator to produce electricity.
A nuclear reactor is hence an equipment where nuclear chain reactions occur and control can be obtained. The nuclear reactor uses mostly uranium-235 and Plutonium-239. When these radioactive substances absorbs neutrons, they undergo nuclear fission causing the nucleus to split into two or more smaller compounds with the release of kinetic energy a form of mechanical energy, gamma radiations and others.The kinetic energy is then harnessed in the equipment as heat (thermal energy) which is received by a cooling system and steam is generated. The steam can then power the generator from which electricity is obtained (electrical energy).
So therefore, in a nuclear reactor, the nuclear energy is transformed to mechanical energy and then thermal energy which powers the generation of the electrical energy.
The answer is 200 g.
If the molar mass of CaCl2 is 110.98 g/mol, this means there are 110.98 g in 1 L of 1 M solution.
Let's find how many g of CaCl2 are present in 0.720 M.
110.98 g : 1 M = x : 0.720 M
x = 110.98 g * 0.720 M : 1 M
x = 79.90 g
So there are 79.90 g in 0.720 M. In other words, in 1 L of 0.720 M solution there will be 79.90 g.
Now, we need to prepare ten beakers with 250 mL of solutions:
10 * 250 mL = 2500 mL = 2.5 L
79.90 g : 1 L = x : 2.5 L
x = 79.90 g * 2.5 L : 1 L
x = 199.75 g ≈ 200 g
Answer:
n NaHCO3 = 9.6 E-3 mol
Explanation:
balanced reaction:
- 2 NaHCO3(s) + H2SO4(ac) ↔ Na2SO4(ac) + 2 CO2(g) + 2 H2O(l)
- assuming a concentration of H2SO4 6M....normally worked in the lab
⇒ n H2SO4 = 8 E-4 L * 6 mol/L = 4.8 E-3 mol H2SO4
according to balanced reaction, we have that for every mol of H2SO4 there are two mol of NaHCO3 ( sodium bicarbonate)
⇒ mol NaHCO3 = 4.8 E-3 mol H2SO4 * ( 2 mol NaHCO3 / mol H2SO4 )
⇒ ,mol NaHCO3 = 9.6 E-3 mol
So 9.6 E-3 mol NaHCO3, are the minimun moles necessary to neutralize the acid.
Explanation:
Solubility is determined by the principle , "like dissolves like" .
i.e. , if a compound is polar then it will dissolve in a polar compound only , and
if a compound is non - polar then it will dissolve in a non - polar compound only .
Hence , from the question ,
Water is a polar molecule , and hence it will dissolve only the polar molecule , i.e. , from the given options the polar molecule is , iii. K₂SO₄
Hexane , is a non - polar molecules , hence it will dissolve only the non polar molecule , i.e. , from the given options the non polar molecule is i. Butane .