The given dehydration equation is,

Cadmiumnitrate tetrahydrate when heated dehydrates releasing the combined water as water vapor. The reaction produces 4 moles of gaseous product water vapor. So, the degree of disorder or randomness increases. Hence, the sign of change in entropy is positive.
This reaction is spontaneous at room temperature even if it is endothermic as the sign of change in entropy is positive.
Answer:
Explanation:
<u>1) Data:</u>
a) Hypochlorous acid = HClO
b) [HClO} = 0.015
c) pH = 4.64
d) pKa = ?
<u>2) Strategy:</u>
With the pH calculate [H₃O⁺], then use the equilibrium equation to calculate the equilibrium constant, Ka, and finally calculate pKa from the definition.
<u>3) Solution:</u>
a) pH
b) Equilibrium equation: HClO (aq) ⇄ ClO⁻ (aq) + H₃O⁺ (aq)
c) Equilibrium constant: Ka = [ClO⁻] [H₃O⁺] / [HClO]
d) From the stoichiometry: [CLO⁻] = [H₃O⁺] = 2.29 × 10 ⁻⁵ M
e) By substitution: Ka = (2.29 × 10 ⁻⁵ M)² / 0.015M = 3.50 × 10⁻⁸ M
f) By definition: pKa = - log Ka = - log (3.50 × 10 ⁻⁸) = 7.46
Answer:
Corn starch, one of the covalent compounds, is solid at room temperature. The property of being solid is more common to ionic compounds. So, the hypothesis was mostly supported except for this one data point.
Explanation:
The scale is pushing back up against her feet with the same amount of force but in negative direction.
This can be explain using Newton's third law of motion which states that "action and reaction are equal and opposite".
As the girl weight pulls down on the scale in a positive way with a force of 42N, the scale pulls back with an equal amount of force upward in another direction.
The net force here is zero this is why the scale is not damaged by her weight.
Learn more:
Force brainly.com/question/12978926
#learnwithBrainly
Answer:- Formula of the hydrate is
and it's name is Iron(III)sulfate pentahydrate.
Solution:- As per the given information, there is 18.4% water in the hydrate. If we assume the mass of the hydrate as 100 grams then there would be 18.4 grams of water and 81.6 grams of Iron(III)sulfate present in the hydrate.
Molar mass for Iron(III)sulfate is 399.88 gram per mol and the molar mass for water is 18.02 gram per mol.
We will calculate the moles of Iron(III)sulfate and water present in the compound on dividing their grams by their molar masses as:

= 

= 
Now, the next step is to calculate the mol ratio and for this we divide the moles of each by the least one of them means whose moles are less. Here, the moles of Iron(III)sulfate are less than moles of water. So, we divide the moles of each by 0.204.
= 1
= 5
There is 1:5 mol ratio between Iron(III)sulfate and water. So, the formula of the hydrate is
and the name of the hydrate is Iron(III)sulfate pentahydrate.