The volume of a sphere is given by:

So, we need to deduct this equation. We will walk through Calculus on the concept of a solid of revolution that is a solid figure that is obtained by rotating a plane curve around some straight line (the axis of revolution<span>) that lies on the same plane. We know from calculus that:
</span>
![V=\pi \int_{a}^{b}[f(x)]^{2}dx](https://tex.z-dn.net/?f=V%3D%5Cpi%20%5Cint_%7Ba%7D%5E%7Bb%7D%5Bf%28x%29%5D%5E%7B2%7Ddx)
<span>
Then, according to the concept of solid of revolution we are going to rotate a circumference shown in the figure, then:
</span>

<span>
Isolationg y:
</span>

<span>
So,
</span>

<span>
</span>
![V=\pi \int_{a}^{b}[\sqrt{r^{2}-x^{2}}]^{2}dx](https://tex.z-dn.net/?f=V%3D%5Cpi%20%5Cint_%7Ba%7D%5E%7Bb%7D%5B%5Csqrt%7Br%5E%7B2%7D-x%5E%7B2%7D%7D%5D%5E%7B2%7Ddx)
<span>
</span>

<span>
being -r and r the limits of this integral.
</span>

<span>
Solving:
</span>
![V=\pi[r^{2}x-\frac{x^{3}}{3}]\right|_{-r}^{r}](https://tex.z-dn.net/?f=V%3D%5Cpi%5Br%5E%7B2%7Dx-%5Cfrac%7Bx%5E%7B3%7D%7D%7B3%7D%5D%5Cright%7C_%7B-r%7D%5E%7Br%7D)
Finally:
<span>
</span>

<span>
</span><span>
</span>
The Mean = (135 + 71 + 69 + 80 + 158 + 152 + 161 + 96 + 122 + 118 + 87 + 85 ) : 12 = 111.166
The smallest value : 69
The greatest value : 161
s² = ∑( x i - x )² / ( n - 1 )
s² = ( 568.274 + 1613.3 + 1777.97 + 971.32 + 2193.42 + 1667.4 + +2483.42 + 230 + 117.38 + 46.7 + 584 + 684.66 ) : 11
s² = 1176.1676
s = √s² = √1176.1676
s ( Standard deviation ) = 34.295
All the values fall within 2 standard deviations:
x (Mean) - 2 s and x + 2 s
Answer:
7% = $34
100% = 100/7 X 34 = 3400/7 = $ 485.71 OR $ 486 ANSWER.
Step-by-step explanation:
100% = 100/7 X 34 = 3400/7 = $ 485.71 OR $ 486 ANSWER.
<span>f(x) = (x – 4)(x + 4) = x^2 - 4. This is the equation of a parabola with vertex at (0,-4) and x-intercepts of (-2,0) and (2,0). The midpoint of the line segment connecting these 2 points is (0,0). Draw this situation and see for yourself!
</span>
Well for the first one it'd be y=3x+50 and for the second one it'd be y=10x