Answer:
Ketone
Explanation:
As you are stating here, we have a carbonated chain of three carbons, and the first and last has 3 Hydrogens, then this means that we have CH₃ . The center carbon is a carbon double bonded to oxygen.
In general terms this belongs to the carbonyl group. However, this alone does not represent a functional group, but when it's in a chain with other radycals or chains, it becomes a functional group.
In this case, the molecule you are talking here is the following:
CH₃ - CO - CH₃
This molecule is known as the Acetone, and has the general form of:
R - CO - R'
Which belongs to a ketone as a functional group.
Answer:
- <u><em>The leftover reactant is the nitrogen gas, N₂.</em></u>
Explanation:
As per your description:
<u>1. Square on the left: N₂(g)</u>
- 3 units of two joint circles: this represents 3 molecules of nitrogen gas, N₂(g).
<u>2. Square on the right: H₂(g)</u>
- 3 units of two joint circles: this represents 3 molecules of hydrogen gas, H₂(g).
<u>3. Reaction</u>
If the maximum possible amount of NH₃ is formed during the reaction, you assume that the reaction goes to completion.
The chemical equation that represents the reaction is:
Which must be balanced:
That means that 1 molecule (or 1 mol) of N₂(g) reacts with 3 molecules (or 3 moles ) of H₂(g) to produce 2 molecules (or 2 moles) of NH₃(g).
Since, the squares show that there are 3 molecules of each reactant, the 3 molecules of hydrogen gas will be able to react with 1 molecule of nitrogen gas. When that happens, all the hydrogen gas is consumend and yet two molecules of nitrogen gas will remain unreacted. Hence, the nitrogen gas is the leftover reactant.
Answer:
H2O<en<phen
Explanation:
The degree of d- splitting is observed from the intensity of colour. The order of d splitting from least to greatest is H2O<en<phen. Phen shows the greatest d-splitting. The degree of splitting of d- orbitals by ligands depends on their relative positions in the spectrochemical series. The spectrochemical series is an experimentally determined series. The series separates the ligands into strong field and weak field ligands. Strong field ligands are found towards the end of the series. Strong field ligands such as en and phen can participate in metal to ligand or ligand to metal pi-bonding. Hence they cause more d-splitting. Ethylendiamine and phenanthroline occur towards the end of the spectrochemical series hence the higher order of d-splitting.
Conversion of mole to grams
k in mole = 1 mole/ atomic mass
K in mole =1/ 39.0983 g/mole
= 0.255765 g/mole
converting 40 grams of K
K 40 grams x [ 1 mole/ 39.0983 grams] = 1.0230623 mole
There are 1.0230623 moles of K in 40 K of Potassium
Answer:
B)
Explanation:
they are not the same animal