The answer is Some of the heat used to make the steam is transformed into work as the steam pushes against the blades to make them turn. This also observes the law of conservation in thermodynamics. The kinetic energy in the steam helps push the blades and is converted to mechanical energy. Some of the energy is lost since it is never 100% efficient.
Answer:
Al
Explanation:
4 Al + 3 O₂ → 2 Al₂O₃
You need to figure out which one has the smaller mole ratio. Convert both substances from grams to moles.
(10.0 g Al)/(26.98 g/mol) = 0.3706 mol Al
(19.0 g O₂)/(32.00 g/mol) = 0.5938 mol O₂
Now, use the mole ratios of reactant to product to see which substance produces the least amount of product.
(0.3706 mol Al) × (2 mol Al₂O₃/4 mol Al) = 0.1853 mol Al₂O₃
(0.5938 mol O₂) × (2 mol Al₂O₃/3 mol O₂) = 0.3958 mol Al₂O₃
Since aluminum produces the least amount of product, this is the limiting reagent.
Answer:
(a) A strong acid
Explanation:
We have given the pH of the solution is 2.46
pH=2.46
So the concentration of 
solution having H+ concentration more than
is acidic
Since in the given solution, H+ concentration is 0.00346 M which is more than 10^{-7}[/tex] so this is an acidic solution
Note-The concentration of
decide the behavior of the solution that is, it is acidic or basic
<u>Answer:</u> This illustrates law of conservation of mass.
<u>Explanation:</u>
Dalton's theory is based on mainly two laws which are law of conservation of mass and law of constant proportion.
Law of conservation of mass states that mass can neither be created nor be destroyed but it can only be transformed from one form to another form.
This also means that total mass on the reactant side must be equal to the total mass on the product side.
The chemical equation for the decomposition of calcium carbonate follows:

We are given:
Mass of calcium carbonate = 100 grams
Mass of calcium oxide = 56 grams
Mass of carbon dioxide = 44 grams
Total mass on reactant side = 100 g
Total mass on product side = 56 + 44 = 100 g
As, the total mass on reactant side is equal to the total mass on product side.
Thus, this illustrates law of conservation of mass.
Answer:
190 mmHg
Explanation:
According to Dalton's law, in a mixture of ideal gases, each gas behaves independently of the other. Also, the total pressure is equal to the sum of the individual partial pressures.
The total pressure of the mixture is 470 mmHg , and the partial pressure of nitrogen is 280 mmHg. Then,
P = pO₂ + pN₂
pO₂ = P - pN₂
pO₂ = 470 mmHg - 280 mmHg
pO₂ = 190 mmHg