Answer:
2Sb^(+3) (aq) + 3S^(-2) (aq) = Sb_2•S_3
Explanation:
First of all, let us balance the equation to give;
2Sb(OH)3 (s) + 3Na2S (aq) = Sb2S3 + 3NaOH
Now, we can observe the presence of positive Sodium ions (Na+) and negative hydroxyl ions (OH-) on both left and right sides of the equation.
Now, the two ions will cancel out. These ions are not really involved in the overall reaction and thus do not require being written in the overall equation. Hence, the overall net ionic reaction can now be written as:
2Sb^(+3) (aq) + 3S^(-2) (aq) = Sb_2•S_3
The control group in this experiment is the one with just distilled water. It is plain so they can use it to compare the other tests against.
If these are you choices:
(1) Both the solid and the liquid are good conductors.
(2) Both the solid and the liquid are poor conductors.
(3) The solid is a good conductor, and the liquid is a poor conductor.
(4) The solid is a poor conductor, and the liquid is a good conductor.
Then the answer is number 4. This is because ionic compound conducts electricity when it is dissolved in water.
Answer: The rate of disappearance of
is 
Explanation:
The given chemical reaction is:

The rate of the reaction for disappearance of
is given as:
![\text{Rate of disappearance of }NO_2=-\frac{\Delta [NO_2]}{\Delta t}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20disappearance%20of%20%7DNO_2%3D-%5Cfrac%7B%5CDelta%20%5BNO_2%5D%7D%7B%5CDelta%20t%7D)
Or,

where,
= final concentration of
= 0.00650 M
= initial concentration of
= 0.0100 M
= final time = 100 minutes
= initial time = 0 minutes
Putting values in above equation, we get:

Hence, the rate of disappearance of
is 
Answer:
The mass was there all along, it was just in the air. The weight of the oxygen from the air is not weighed in the beginning, only at the end as part of the product, making it seem like there is a total mass change.