answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Setler79 [48]
2 years ago
12

How fast must an object move before its length appears to be contracted to one-fourth its proper length? (Give your answer in te

rms of c.)
Physics
1 answer:
Tresset [83]2 years ago
3 0

Answer:

<em>0.97c</em>

<em></em>

Explanation:

From the relativistic equation for length contraction, we have

l = l_{0}\sqrt{1 - \beta }

where

l is the final length of the object

l_{0} is the original length of the object before contraction

β = v^{2} /c^2

where v is the speed of the object

c is the speed of light in free space = 3 x 10^8 m/s

The equation can be re-written as

l/l_{0} = \sqrt{1 - \beta }

For the length to contract to one-fourth of the proper length, then

l/l_{0} = 1/4

substituting into the equation, we'll have

1/4 = \sqrt{1 - \beta }

substituting for β, we'll have

1/4 = \sqrt{1 - v^2/c^2 }

squaring both side of the equation, we'll have

1/16 = 1 - v^2/c^2

v^2/c^2 = 1 - 1/16

v^2/c^2 = 15/16

square root both sides of the equation, we have

v/c = 0.968

v = <em>0.97c</em>

You might be interested in
A student throws a 0.22 kg rock horizontally at 20.0 m/s from 10.0 m above the ground. Find the initial kinetic energy of the ro
LekaFEV [45]

Answer:

44J

Explanation:

Given parameters:

Mass of rock  = 0.22kg

Initial velocity  = 20m/s

Distance moved  = 10m

Unknown:

Initial kinetic energy of the rock  = ?

Solution:

To solve this problem, we need to understand that kinetic energy is the energy due to the motion of a body.

It is mathematically expressed as;

     Kinetic energy  = \frac{1}{2} m v²

m is the mass

v is the velocity

   Kinetic energy  =  \frac{1}{2} x 0.22 x 20²   = 44J

6 0
1 year ago
In a power plant, pipes transporting superheated vapor are very common. Superheated vapor flows at a rate of 0.3 kg/s inside a p
grigory [225]

Answer:h=160.84 W/m^2-K

Explanation:

Given

mass flow rate=0.3 kg/s

diameter of pipe=5 cm

length of pipe=10 m

Inside temperature=22

Pipe surface =100

Temperature drop=30

specific heat of vapor(c)=2190 J/kg.k

heat supplied Q=mc\Delta T=0.3\times 2190\times (30)

Heat due to convection =hA(100-30)

A=\pi d\cdot L

A=\pi 0.05\times 10=1.571 m^2

Q_{convection}=h\times 1.571\times (100-22)=122.538 h

Q=Q_{convection}

19,710=122.538 h

h=160.84 W/m^2-K

5 0
2 years ago
In the Atwood machine shown below, m1 = 2.00 kg and m2 = 6.05 kg. The masses of the pulley and string are negligible by comparis
Rus_ich [418]
M1 descending
−m1g + T = m1a 

m2 ascending
m2g − T = m2a

this gives :
(m2 − m1)g = (m1 + m2)a 

a = (m2 − m1)g/m1 + m2
   = (5.60 − 2)/(2 + 5.60) x 9.81 
   = = 4.65m/s^2
5 0
2 years ago
A guitar string has a linear density of 8.30 ✕ 10−4 kg/m and a length of 0.660 m. the tension in the string is 56.7 n. when the
Sedbober [7]
Ans: Beat Frequency = 1.97Hz

Explanation:
The fundamental frequency on a vibrating string is 

f =   \sqrt{ \frac{T}{4mL} }<span>  -- (A)</span>

<span>here, T=Tension in the string=56.7N,
L=Length of the string=0.66m,
m= mass = 8.3x10^-4kg/m * 0.66m = 5.48x10^-4kg </span>


Plug in the values in Equation (A)

<span>so </span>f = \sqrt{ \frac{56.7}{4*5.48*10^{-4}*0.66} }<span> = 197.97Hz </span>

<span>the beat frequency is the difference between these two frequencies, therefore:
Beat frequency = 197.97 - 196.0 = 1.97Hz
-i</span>
3 0
2 years ago
Read 2 more answers
Charge is placed on two conducting spheres that are very far apart and connected by a long thin wire. The radius of the smaller
kobusy [5.1K]

Answer:

σ₁ = 3.167 * 10^{-6} C/m²

σ₂ = 7.6 * 10 ^{-6}  C/m²

Explanation:

The given data :-

i) The radius of smaller sphere ( r ) = 5 cm.

ii) The radius of larger sphere ( R ) = 12 cm.

iii) The electric field at of larger sphere  ( E₁ ) = 358 kV/m. = 358 * 1000 v/m

E_{1} = (\frac{1}{4\pi\epsilon  }) (\frac{Q_{1} }{R^{2} } )

358000 = 9 * 10^{9 } *\frac{Q_{1} }{0.12^{2} }

Q₁ = 572.8 * 10^{-9} C

Since the field inside a conductor is zero, therefore electric potential ( V ) is constant.

V = constant

∴\frac{Q_{1} }{R} = \frac{Q_{2} }{r}

Q_{2}  = \frac{r}{R} *Q_{1}

Q_{2} = \frac{5}{12} *572.8*10^{-9}   = 238.666 *10^{-9} C

Surface charge density ( σ₁ ) for large sphere.

Area ( A₁ )  = 4 * π * R²  = 4 * 3.14 * 0.12 = 0.180864 m².

σ₁  = \frac{Q_{1} }{A_{1} } = \frac{572.8 *10^{-9} }{0.180864} = 3.167 * 10^{-6}  C/m².

Surface charge density ( σ₂ ) for smaller sphere.

Area ( A₂ )  = 4 * π * r²  = 4 * 3.14 * 0.05²  =0.0314 m².

σ₂ =\frac{Q_{2} }{A_{2} } = \frac{238.66 *10^{-9} }{0.0314} = 7.6 * 10 ^{-6} C/m²

8 0
2 years ago
Other questions:
  • Block 1 of mass m1 slides along a frictionless floor and into a one-dimensional elastic collision with stationary block 2 of mas
    5·1 answer
  • In this lab, you will use a dynamics track to generate collisions between two carts. If momentum is conserved, what variable cha
    5·2 answers
  • A transverse wave on a string has an amplitude A. A tiny spot on the string is colored red. As one cycle of the wave passes by,
    7·1 answer
  • The rotational kinetic energy term is often called the kinetic energy in the center of mass, while the translational kinetic ene
    5·2 answers
  • A physicist is constructing a solenoid. She has a roll of insulated copper wire and a power supply. She winds a single layer of
    10·1 answer
  • The blood plays an important role in removing heat from th ebody by bringing the heat directly to the surface where it can radia
    13·1 answer
  • (a) Triply charged uranium-235 and uranium-238 ions are being separated in a mass spectrometer. (The much rarer uranium-235 is u
    6·1 answer
  • Fill in the terms that accurately complete the statements. The nucleus contains positively charged particles called and neutral
    11·2 answers
  • Adam takes a bus on a school field trip. The bus route is split into the five legs listed in the table. Find the average velocit
    10·1 answer
  • 20 points please help!!
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!