Answer:
0.94
Step-by-step explanation:
The question after this basically is:
<em>"If the applicant passes the "aptitude test for managers", what is the probability that the applicant will succeed in the management position?"</em>
<em />
So,
P(successful if hired) = 60% = 0.6 [let it be P(x)]
P(success at passing the test) = 85% = 0.85 [let it be P(y)]
P(successful and pass the test) = P(x) + P(y) -[P(x)*P(y)]
So,
P(successful and pass the test) = 0.6 + 0.85 - (0.6*0.85) = 0.94 (94%)
Answer:
Step-by-step explanation:
The position function is
and if we are looking for the time(s) that the ball is 10 feet above the surface of the moon, we sub in a 10 for s(t) and solve for t:
and
and factor that however you are currently factoring quadratics in class to get
t = .07 sec and t = 18.45 sec
There are 2 times that the ball passes 10 feet above the surface of the moon, once going up (.07 sec) and then again coming down (18.45 sec).
For part B, we are looking for the time that the ball lands on the surface of the moon. Set the height equal to 0 because the height of something ON the ground is 0:
and factor that to get
t = -.129 sec and t = 18.65 sec
Since time can NEVER be negative, we know that it takes 18.65 seconds after launch for the ball to land on the surface of the moon.
Answer:
Step-by-step explanation:
Given;

a)
substitute 
b)
Apply partial fraction in (a), we get;

where C is an arbitrary constant
AD = BC ----> Parallel lines
AC = AC -----> Reflexive property
<A = <C -----> Congruent angles
<D = <B -----> Congruent angles
I divided 746 by 4 which equals 186.5 I think that’s the answer