Given f(n+1) =-2f(n)
here f(n) =f(1) = -1.5
f(n+1) =f(2) = -2 * -1.5 = 3
Answer:
20.41%
Step-by-step explanation:
87.95 - 70 = 17.95
17.95 / 87.95= 0.20409323479
0.20409323479 x 100 = 20.409323479
round it
= 20.41%
Answer:
Shift 2 unit left
Flip the graph about y-axis
Stretch horizontally by factor 2
Shift vertically up by 2 units
Step-by-step explanation:
Given:
Parent function: 
Transformation function: 
Take -2 common from transform function f(x)
![f(x)=\log[-2(x+2)]+2](https://tex.z-dn.net/?f=f%28x%29%3D%5Clog%5B-2%28x%2B2%29%5D%2B2)
Now we see the step-by-step translation

Shift 2 unit left ( x → x+2 )

Flip the graph about y-axis ( (x+2) → - (x+2) )
![f(x)=\log[-(x+2)]](https://tex.z-dn.net/?f=f%28x%29%3D%5Clog%5B-%28x%2B2%29%5D)
Stretch horizontally by factor 2 [ -x(x+2) → -2(x+2) ]
![f(x)=\log[-2(x+2)]](https://tex.z-dn.net/?f=f%28x%29%3D%5Clog%5B-2%28x%2B2%29%5D)
Shift vertically up by 2 units [ f(x) → f(x) + 2 ]
![f(x)=\log[-2(x+2)]+2](https://tex.z-dn.net/?f=f%28x%29%3D%5Clog%5B-2%28x%2B2%29%5D%2B2)
Simplify the function:

Hence, Using four step of transformation to get new function 
<span>The integer -1 has an absolute value of 1, which is greater than itself. Since all negative integers are by definition integers, their respective absolute values will be greater than themselves.</span>