Answer:
Janet stops parking in handicapped spaces after she gets a big parking ticket. - Positive Punishment
Peter’s recess is taken away to discourage him from getting into fights with the other children. - Negative Punishment
Ted increases paying his bills on time to avoid a late fee. - Negative Reinforcement
Sally increases the amount of work she completes to receive more pay. - Positive Reinforcement
Explanation:
In operant conditioning, the main principle is that behavior increases or decreases its frequency depending on whether it's reinforced or punished. A behavior can be reinforced by giving something the subject appreciates, like more pay for their work (positive reinforcement) or taking away something they dislike, like late fees (negative reinforcement). Punishments work the same way, you can give something the subject dislikes, like a parking ticket, (positive punishment) or taking away something they like recess for a child. (negative punishment).
Answer:
B_o = 1.013μT
Explanation:
To find B_o you take into account the formula for the emf:

where you used that A (area of the loop) is constant, an also the angle between the direction of B and the normal to A.
By applying the derivative you obtain:

when the emf is maximum the angle between B and the normal to A is zero, that is, cosθ = 1 or -1. Furthermore the cos function is 1 or -1. Hence:

hence, B_o = 1.013μT
The neutral pH is 7. Less than 7 indicates an acid and more than 7 indicates a base (up to 14).
<span>
NaCl - it's a salt (we can't measure the pH)
H2O - it can be an acid but also a base (the pH it is almost neutral,meaning close to 7 )
HF - it is a strong acid
</span><span>
KOH
- it is a strong base (pH=14)
</span>
↓
He needs to use HF (Hydrogen fluoride) to decrease the pH.
Answer: Mass of the planet, M= 8.53 x 10^8kg
Explanation:
Given Radius = 2.0 x 106m
Period T = 7h 11m
Using the third law of kepler's equation which states that the square of the orbital period of any planet is proportional to the cube of the semi-major axis of its orbit.
This is represented by the equation
T^2 = ( 4π^2/GM) R^3
Where T is the period in seconds
T = (7h x 60m + 11m)(60 sec)
= 25860 sec
G represents the gravitational constant
= 6.6 x 10^-11 N.m^2/kg^2 and M is the mass of the planet
Making M the subject of the formula,
M = (4π^2/G)*R^3/T^2
M = (4π^2/ 6.6 x10^-11)*(2×106m)^3(25860s)^2
Therefore Mass of the planet, M= 8.53 x 10^8kg
The current is defined as the amount of charge transferred through a certain point in a certain time interval:

where
I is the current
Q is the charge

is the time interval
For the lightning bolt in our problem, Q=6.0 C and

, so the average current during the event is