<span>2/15 if drawn without replacement.
1/9 if drawn with replacement.
Assuming that the chips are drawn without replacement, there are 6 * 5 different possibilities. And that's a low enough number to exhaustively enumerate them. So they are:
1,2 : 1,3 : 1,4 : 1,5 : 1,6
2,1 : 2,3 : 2,4 : 2,5 : 2,6
3,1 : 3,2 : 3.4 : 3,5 : 3,6
4,1 : 4,2 : 4.3 : 4,5 : 4,6
5,1 : 5,2 : 5.3 : 5,4 : 5,6
6,1 : 6,2 : 6.3 : 6,4 : 6,5
Of the above 30 possible draws, there are 4 that add up to 5. So the probability is 4/30 = 2/15
If the draw is done with replacement, then there are 36 possible draws. Once again, small enough to exhaustively list, they are:
1,1 : 1,2 : 1,3 : 1,4 : 1,5 : 1,6
2,1 : 2,2 : 2,3 : 2,4 : 2,5 : 2,6
3,1 : 3,2 : 3,3 : 3.4 : 3,5 : 3,6
4,1 : 4,2 : 4.3 : 4,4 : 4,5 : 4,6
5,1 : 5,2 : 5.3 : 5,4 : 5,5 : 5,6
6,1 : 6,2 : 6.3 : 6,4 : 6,5 : 6,6
And of the above 36 possibilities, exactly 4 add up to 5. So you have 4/36 = 1/9</span>
Let , side lawn is a.
Area of boundary is :

Now, total cost is given by :

Area left is :

Price to empty space with turfs is :

Therefore, the cost of covering the empty space with turfs at the rate of Rs 20 per sq. metre is Rs 262500.
Hence, this is the required solution.
(a) 0.059582148 probability of exactly 3 defective out of 20
(b) 0.98598125 probability that at least 5 need to be tested to find 2 defective.
(a) For exactly 3 defective computers, we need to find the calculate the probability of 3 defective computers with 17 good computers, and then multiply by the number of ways we could arrange those computers. So
0.05^3 * (1 - 0.05)^(20-3) * 20! / (3!(20-3)!)
= 0.05^3 * 0.95^17 * 20! / (3!17!)
= 0.05^3 * 0.95^17 * 20*19*18*17! / (3!17!)
= 0.05^3 * 0.95^17 * 20*19*18 / (1*2*3)
= 0.05^3 * 0.95^17 * 20*19*(2*3*3) / (2*3)
= 0.05^3 * 0.95^17 * 20*19*3
= 0.000125* 0.418120335 * 1140
= 0.059582148
(b) For this problem, let's recast the problem into "What's the probability of having only 0 or 1 defective computers out of 4?" After all, if at most 1 defective computers have been found, then a fifth computer would need to be tested in order to attempt to find another defective computer. So the probability of getting 0 defective computers out of 4 is (1-0.05)^4 = 0.95^4 = 0.81450625.
The probability of getting exactly 1 defective computer out of 4 is 0.05*(1-0.05)^3*4!/(1!(4-1)!)
= 0.05*0.95^3*24/(1!3!)
= 0.05*0.857375*24/6
= 0.171475
So the probability of getting only 0 or 1 defective computers out of the 1st 4 is 0.81450625 + 0.171475 = 0.98598125 which is also the probability that at least 5 computers need to be tested.
Answer:
D
Step-by-step explanation:
If two lines are perpendicular, the products of their slopes will be -1. Therefore, we're looking for a line with slope of -1/2. Let's check each answer:
A: 5 - 3 / (-2 - 3) = 2 / -5
B: 6 - 5 / 6 - 5 = 1
C: 5 - 3 / 4 - 3 = 2
D: 4 - 3 / 3 - 5 = -1/2
The answer is D.