Answer:
y = 0.2x + 250
Step-by-step explanation:
let the sales be x and y be earnings
thus,
given
x₁ = $3,500 ; y₁ = $950
and,
x₂ = $2,800 ; y₂ = $810
Now,
the standard line equation is given as:
y = mx + c
here,
m is the slope
c is the constant
also,
m = 
or
m = 
or
m = 0.2
substituting the value of 'm' in the equation, we get
y = 0.2x + c
now,
substituting the x₁ = $3,500 and y₁ = $950 in the above equation, we get
$950 = 0.2 × $3,500 + c
or
$950 = $700 + c
or
c = $250
hence,
The equation comes out as:
y = 0.2x + 250
To find the time at which both balls are at the same height, set the equations equal to each other then solve for t.
h = -16t^2 + 56t
h = -16t^2 + 156t - 248
-16t^2 + 56t = -16t^2 + 156t - 248
You can cancel out the -16t^2's to get
56t = 156t - 248
=> 0 = 100t - 248
=> 248 = 100t
=> 2.48 = t
Using this time value, plug into either equation to find the height.
h = 16(2.48)^2 + 56(2.48)
Final answer:
h = 40.4736
Hope I helped :)
The costume designer should use 1/8 of the fabric dedicated to sashes for each dress.
Answer:
6 is the correct answer
Step-by-step explanation:
Hope it is helpful...