Saturated fats have single bond between the carbon atoms, this makes them a solid at room temperature. Unsaturated fats have at least one double bond between the carbon atoms, which makes them liquid in room temperature.
Explanation:
Since, the given reaction is as follows.
Hence, rate law of the reaction is as follows.
R = ![k[NO][Cl_{2}]](https://tex.z-dn.net/?f=k%5BNO%5D%5BCl_%7B2%7D%5D)
As it is known that rate of a reaction depends on the initial concentration of products. So here, the rate of reaction will depend on the concentration of NO and
. Since, power of the concentrations of each of these is equal to 1. Therefore, order of the reaction is equal to 1 + 1 = 2.
According to the rate law, reactants involved in the rate determining step are NO and
. Hence, first step of the mechanism is the rate determining step.
Also, according to the rate of reaction doubling the concentration of NO will double the rate of reaction.
The number of reactants taking part in a single step of the reaction is known as molecularity of the reaction. Therefore, molecularity of the first step of the reaction is 2.
Both the given steps are not termolecular.
There are several ways to visually represent compounds. For this particular organic compound, we can use the skeletal formula and the expanded formula. The skeletal makes use of lines to show which atoms are bonded to each other. The expanded formula shows the species of the atoms and their bonding with other atoms. I have attached the two representations.
<span>It is the valence orbit that controls the electrical properties of the atom. The valence electron is referred to as a "free electron.' Valence electrons have the highest energy of all electrons in an atom; they are also the most reactive, meaning they are usually the electrons involved in bonding. When silicon atoms combine to form a solid, they arrange themselves into an orderly pattern called a crystal.</span>
Answer:
324.18 g/mol
Explanation:
Let the molecular mass of the antimalarial drug, Quinine is x g/mol
According to question,
Nitrogen present in the drug is 8.63% of x
So, mass of nitrogen = 
Also, according to the question,
2 atoms are present in 1 molecule of the drug.
Mass of nitrogen = 14.01 amu = 14.01 g/mol (grams for 1 mole)
So, mass of nitrogen = 14.01×2 = 28.02
These 2 must be equal so,

solving for x, we get:
<u>x = 324.18 g/mol</u>