Ther will be 40 eights. Hope this helps!
Answer:
has the same diameter as the sphere, and height equal to its diameter. ... The surfce area of a soccer ball is 250 square inches. ... An official basketball has a radius of 12.5 cm and ... much leather is required to cover 12 official.
Step-by-step explanation:
The best measure of center tendency for this set of data would be the median. It is the best measurement because the data set has an outlier. The outlier is the 30. So to find the median we first order the data set and then find out if the set is an even or odd set. This set is even so we just chose the middle number. If the set was even, we would add the two center number and divide them by 2.
3, 3, 4, 4, 4, 5, 5, 5, 30
The center tendency = 4
Could you give me an example of a slope-intercept form? like the formula then I'll be able to help
Answer:
![x_3 = \left[\begin{array}{c}4&3&1\\0\end{array}\right]](https://tex.z-dn.net/?f=x_3%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D4%263%261%5C%5C0%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
According to the given situation, The computation of all x in a set of a real number is shown below:
First we have to determine the
so that 
![\left[\begin{array}{cccc}1&-3&5&-5\\0&1&-3&5\\2&-4&4&-4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-3%265%26-5%5C%5C0%261%26-3%265%5C%5C2%26-4%264%26-4%5Cend%7Barray%7D%5Cright%5D)
Now the augmented matrix is
![\left[\begin{array}{cccc}1&-3&5&-5\ |\ 0\\0&1&-3&5\ |\ 0\\2&-4&4&-4\ |\ 0\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-3%265%26-5%5C%20%7C%5C%200%5C%5C0%261%26-3%265%5C%20%7C%5C%200%5C%5C2%26-4%264%26-4%5C%20%7C%5C%200%5Cend%7Barray%7D%5Cright%5D)
After this, we decrease this to reduce the formation of the row echelon
![R_3 = R_3 -2R_1 \rightarrow \left[\begin{array}{cccc}1&-3&5&-5\ |\ 0\\0&1&-3&5\ |\ 0\\0&2&-6&6\ |\ 0\end{array}\right]](https://tex.z-dn.net/?f=R_3%20%3D%20R_3%20-2R_1%20%5Crightarrow%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-3%265%26-5%5C%20%7C%5C%200%5C%5C0%261%26-3%265%5C%20%7C%5C%200%5C%5C0%262%26-6%266%5C%20%7C%5C%200%5Cend%7Barray%7D%5Cright%5D)
![R_3 = R_3 -2R_2 \rightarrow \left[\begin{array}{cccc}1&-3&5&-5\ |\ 0\\0&1&-3&5\ |\ 0\\0&0&0&-4\ |\ 0\end{array}\right]](https://tex.z-dn.net/?f=R_3%20%3D%20R_3%20-2R_2%20%5Crightarrow%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-3%265%26-5%5C%20%7C%5C%200%5C%5C0%261%26-3%265%5C%20%7C%5C%200%5C%5C0%260%260%26-4%5C%20%7C%5C%200%5Cend%7Barray%7D%5Cright%5D)
![R_2 = 4R_2 +5R_3 \rightarrow \left[\begin{array}{cccc}1&-3&5&-5\ |\ 0\\0&4&-12&0\ |\ 0\\0&0&0&-4\ |\ 0\end{array}\right]](https://tex.z-dn.net/?f=R_2%20%3D%204R_2%20%2B5R_3%20%5Crightarrow%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-3%265%26-5%5C%20%7C%5C%200%5C%5C0%264%26-12%260%5C%20%7C%5C%200%5C%5C0%260%260%26-4%5C%20%7C%5C%200%5Cend%7Barray%7D%5Cright%5D)
![R_2 = \frac{R_2}{4}, R_3 = \frac{R_3}{-4} \rightarrow \left[\begin{array}{cccc}1&-3&5&-5\ |\ 0\\0&1&-3&0\ |\ 0\\0&0&0&1\ |\ 0\end{array}\right]](https://tex.z-dn.net/?f=R_2%20%3D%20%5Cfrac%7BR_2%7D%7B4%7D%2C%20%20R_3%20%3D%20%5Cfrac%7BR_3%7D%7B-4%7D%20%20%5Crightarrow%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-3%265%26-5%5C%20%7C%5C%200%5C%5C0%261%26-3%260%5C%20%7C%5C%200%5C%5C0%260%260%261%5C%20%7C%5C%200%5Cend%7Barray%7D%5Cright%5D)
![R_1 = R_1 +3 R_2 \rightarrow \left[\begin{array}{cccc}1&0&-4&-5\ |\ 0\\0&1&-3&0\ |\ 0\\0&0&0&-1\ |\ 0\end{array}\right]](https://tex.z-dn.net/?f=R_1%20%3D%20R_1%20%2B3%20R_2%20%5Crightarrow%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%260%26-4%26-5%5C%20%7C%5C%200%5C%5C0%261%26-3%260%5C%20%7C%5C%200%5C%5C0%260%260%26-1%5C%20%7C%5C%200%5Cend%7Barray%7D%5Cright%5D)
![R_1 = R_1 +5 R_3 \rightarrow \left[\begin{array}{cccc}1&0&-4&0\ |\ 0\\0&1&-3&0\ |\ 0\\0&0&0&-1\ |\ 0\end{array}\right]](https://tex.z-dn.net/?f=R_1%20%3D%20R_1%20%2B5%20R_3%20%5Crightarrow%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%260%26-4%260%5C%20%7C%5C%200%5C%5C0%261%26-3%260%5C%20%7C%5C%200%5C%5C0%260%260%26-1%5C%20%7C%5C%200%5Cend%7Barray%7D%5Cright%5D)

![x = \left[\begin{array}{c}4x_3&3x_3&x_3\\0\end{array}\right] \\\\ x_3 = \left[\begin{array}{c}4&3&1\\0\end{array}\right]](https://tex.z-dn.net/?f=x%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D4x_3%263x_3%26x_3%5C%5C0%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5C%20x_3%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D4%263%261%5C%5C0%5Cend%7Barray%7D%5Cright%5D)
By applying the above matrix, we can easily reach an answer