Answer:
<h2>√512 by √512 </h2>
Step-by-step explanation:
Length the length and breadth of the rectangle be x and y.
Area of the rectangle A = Length * breadth
Perimeter P = 2(Length + Breadth)
A = xy and P = 2(x+y)
If the area of the rectangle is 512m², then 512 = xy
x = 512/y
Substituting x = 512/y into the formula for calculating the perimeter;
P = 2(512/y + y)
P = 1024/y + 2y
To get the value of y, we will set dP/dy to zero and solve.
dP/dy = -1024y⁻² + 2
-1024y⁻² + 2 = 0
-1024y⁻² = -2
512y⁻² = 1
y⁻² = 1/512
1/y² = 1/512
y² = 512
y = √512 m
On testing for minimum, we must know that the perimeter is at the minimum when y = √512
From xy = 512
x(√512) = 512
x = 512/√512
On rationalizing, x = 512/√512 * √512 /√512
x = 512√512 /512
x = √512 m
Hence, the dimensions of a rectangle is √512 m by √512 m
Answer:
99.85%
Step-by-step explanation:
The lifespans of meerkats in a particular zoo are normally distributed. The average meerkat lives 10.4 years; the standard deviation is 1.9 years.
Use the empirical rule (68-95-99.7%) to estimate the probability of a meerkat living less than 16.1 years.
Solution:
The empirical rule states that for a normal distribution most of the data fall within three standard deviations (σ) of the mean (µ). That is 68% of the data falls within the first standard deviation (µ ± σ), 95% falls within the first two standard deviations (µ ± 2σ), and 99.7% falls within the first three standard deviations (µ ± 3σ).
Therefore:
68% falls within (10.4 ± 1.9). 68% falls within 8.5 years to 12.3 years
95% falls within (10.4 ± 2*1.9). 95% falls within 6.6 years to 14.2 years
99.7% falls within (10.4 ± 3*1.9). 68% falls within 4.7 years to 16.1 years
Probability of a meerkat living less than 16.1 years = 100% - (100% - 99.7%)/2 = 100% - 0.15% = 99.85%
Answer:
28.09 for both including taxes
Step-by-step explanation:
6% of $14.50 is $0.87. 6% of $12 is $0.72. Together the values add up to $28.09.
Answer:
srtand trv
Step-by-step explanation: