Answer:
2.94x10²² atoms of Cu
Explanation:
We must work with NA to solve this, where NA is the number of Avogadro, number of particles of 1 mol of anything.
Molar mass Cu = 63.55 g/mol
Mass / Molar mass = Mol → 3.11 g / 63.55 g/m = 0.0489 moles
1 mol of Cu has 6.02x10²³ atoms of Cu
0.0489 moles of Cu, will have (0.0489 .NA)/ 1 = 2.94x10²² atoms of Cu
<span>the answer is
1A = 10^-10 m
so </span>1.61Å = 1.61 x 10^-10 m
he distance between the atoms of H−I is 1.61 x 10^-10 m
In a chemical reaction,
the limiting reagent is the chemical being used up while the excess reactant is
the chemical left after the reaction process.
Before calculating the limiting
and excess reactant, it is important to balance the equation first by stoichiometry.
C25N3H30Cl + NaOH = C25N3H30OH + NaCl
Since the reaction is already balanced, we can now identify which
is the limiting and excess reagent.
First, we need to determine the number of moles of each chemical
in the equation. This is crucial for determining the limiting and excess reagent.
<span>Assuming that there is the
same amount of solution X for each reactant</span>
1.0 M NaOH ( X ) = 1.0
moles NaOH
1.00 x 10-5 M C25N3H30Cl
( X ) = 1.00 x 10-5 moles C25N3H30Cl
<span>The result showed that the
crystal violet has lesser amount than NaOH. Thus, the limiting reactant in this
chemical reaction is crystal violet and the excess reactant is NaOH.</span>
Answer:
0.047 %
Explanation:
Step 1: Given data
- Partial pressure of ozone (pO₃): 0.33 torr
- Total pressure of air (P): 695 torr
Step 2: Calculate the %v/v of ozone in the air
Air is a mixture of gases. We can find the %v/v of ozone (a component) in the air (mixture) using the following expression.
<em>%v/v = pO₃/P × 100%</em>
%v/v = 0.33 torr/695 torr × 100%
%v/v = 0.047 %
Answer:
just answer this and you will have yours
Explanation:Find the area of a circle with a diameter of \color{green}{16}16start color green, 16, end color green.
Either enter an exact answer in terms of \piπpi or use 3.143.143, point, 14 for \piπpi and enter your answer as a decimal.