Answer:
75 kgm/s
Explanation:
Impulse: This can be defined as the product of mass and change in velocity. The S.I unit is kgm/s.
From the question,
I = m(v-u)................... Equation 1
Where I = impulse, m = mass, v = final velocity, u = initial velocity.
Let the direction of the initial velocity be the positive direction.
Given: m = 5 kg, v = -10 m/s (bounce off), u = 5 m/s.
Substitute into equation 1
I = 5(-10-5)
I = 5(-15)
I = -75 kgm/s.
The negative sign tells that the impulse act in the same direction as the final velocity of the ball
Hence,
I = 75 kgm/s
Answer:
Explanation:
GIVEN DATA:
Distance between keisha and her friend 8.3 m
angle made by keisha toside building 30 degree
height of her friend monique is 1.5 m
from the figure



therefore
height of keisha is 
= 14.376 + 1.5

therefore option c is correct
Answer:
the expected distance is 4.32 m
Explanation:
given data
half life time = 1.8 ×
s
speed = 0.8 c = 0.8 × 3 ×
to find out
expected distance over
solution
we know c is speed of light in air is 3 ×
m/s
we calculate expected distance by given formula that is
expected distance = half life time × speed .........1
put here all these value
expected distance = half life time × speed
expected distance = 1.8 ×
× 0.8 × 3 ×
expected distance = 4.32
so the expected distance is 4.32 m
Energy is calculated as power*time, so give the wattage of 1200 W (equivalent to 1200 Joules/second) and time of 30 seconds, multiplying these gives 36000 J or 36 kJ of electrical energy.
If electrical charge or current is needed: Power = voltage * current, so given the power of 1200 watts and voltage of 120 V, current is 1200 W / 120 V = 10 Amperes. Charge is calculated by multiplying 10 A*30 s = 300 C.