answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sergij07 [2.7K]
2 years ago
4

Sarah was trying to explain electromagnetic waves energy to her lab partner. She said that microwaves have more energy than infr

ared
waves. Her partner Jose argued that infrared waves have more energy Who is right and provides the correct justification?
A Jose is correct because infrared waves have a smaller amplitude than microwaves
B. Jose is correct because infrared waves have a greater frequency than microwaves.
C. Sarah is correct because microwaves have a greater frequency than infrared.
Sarah is correct because microwaves have a smaller wavelength than infrared.
Physics
1 answer:
Rufina [12.5K]2 years ago
6 0
Ndjdjdm g t yheisbs msid su T❤️‍♀️b?.): dh dur rjruviz

A. Jose is correct because infrared waves have a smaller amplitude than microwaves
You might be interested in
"For a first order instrument with a sensitivity of .4 mV/K and a time" constant of 25 ms, find the instrument’s response as a f
ELEN [110]

Answer:

Explanation:

Given that:

For a first order instrument with a sensitivity of .4 mV/K

constant c  = 25 ms = 25 × 10⁻³ s

The initial temperature T_1 = 273 K

The final temperature T_2 = 473 K

The initial volume = 0.4 mV/K × 273 K = 109.2 V

The final volume =  0.4 mV/K × 473 K =  189.2 V

the instrument’s response as a function of time for a sudden temperature increase can be computed as follows:

Let consider y to be the function of time i.e y(t).

So;

y(t) = 109.2  + (189.2 - 109.2)( 1 - \mathbf{e^{-t/c}})mV

y(t) = (109.2 +  80 ( 1 - \mathbf{e^{t/25\times 10^{-3}}})) mV

Plot the response y(t) as a function of time.

The plot of y(t) as a function of time can be seen in the diagram  attached below.

What are the units for y(t)?

The unit for y(t) is mV.

Find the 90% rise time for y(t90) and the error fraction,

The 90% rise time for y(t90) is as follows:

Initially 90% of 189.2 mV = 0.9 ×  189.2 mV

=  170.28 mV

170.28 mV = (109.2 +  80 ( 1 - \mathbf{e^{t/25\times 10^{-3}}})) mV

170.28 mV - 109.2 mV = 80 ( 1 - \mathbf{e^{t/25\times 10^{-3}}})) mV

61.08 mV =  80 ( 1 - \mathbf{e^{t/25\times 10^{-3}}})) mV

0.7635  mV = ( 1 - \mathbf{e^{t/25\times 10^{-3}}})) mV

t = 1.44 × 25  × 10⁻³ s

t = 0.036 s

t = 36 ms

The error fraction = \dfrac{189.2-170.28  }{189.2}

The error fraction = 0.1

The error fraction = 10%

8 0
2 years ago
A truck with a heavy load has a total mass of 7100 kg. It is climbing a 15∘ incline at a steady 15 m/s when, unfortunately, the
Andrej [43]

Answer:

The load has a mass of 2636.8 kg

Explanation:

Step 1 : Data given

Mass of the truck = 7100 kg

Angle = 15°

velocity = 15m/s

Acceleration = 1.5 m/s²

Mass of truck = m1 kg

Mass of load = m2 kg

Thrust from engine = T

Step 2:

⇒ Before the load falls off, thrust (T) balances the component of total weight downhill:

T = (m1+m2)*g*sinθ

⇒ After the load falls off, thrust (T) remains the same but downhill component of weight becomes  m1*gsinθ .

Resultant force on truck is F = T – m1*gsinθ  

F causes the acceleration of the truck: F= m*a

This gives the equation:

T – m1*gsinθ = m1*a  

T = m1(a + gsinθ)

Combining both equations gives:

(m1+m2)*g*sinθ = m1*(a + gsinθ)

m1*g*sinθ + m2*g*sinθ =m1*a + m1*g*sinθ

m2*g*sinθ = m1*a

Since m1+m2 = 7100kg, m1= 7100 – m2. This we can plug into the previous equation:

m2*g*sinθ = (7100 – m2)*a

m2*g*sinθ = 7100a – m2a

m2*gsinθ + m2*a = 7100a

m2* (gsinθ + a) = 7100a

m2 = 7100a/(gsinθ  + a)

m2 = (7100 * 1.5) / (9.8sin(15°) + 1.5)

m2 = 2636.8 kg

The load has a mass of 2636.8 kg

6 0
2 years ago
If period of the pendulum in preceding sample problem were 24s how tall would the tower be ?
frutty [35]

Answer:

So length of pendulum is 143.129 m

Explanation:

We have given period of simple pendulum is 2 sec

We have to find the length of simple pendulum

Let the length of pendulum is l

Acceleration due to gravityg=9.8m/sec^2 is

Time period is given by T=2\pi \sqrt{\frac{l}{g}}

So 24=2\times 3.14\times  \sqrt{\frac{l}{9.8}}

\sqrt{\frac{l}{9.8}}=3.821

Squaring both side

{\frac{l}{9.8}}=14.60

l =143.129 m

So length of pendulum is 143.129 m

8 0
2 years ago
Read 2 more answers
A spring balance consists of a pan that hangs from a spring. A damping force Fd = −bv is applied to the balance so that when an
Citrus2011 [14]

Answer:

b ≈ 64 Kg/s

Explanation:

Given

Fd = −bv

m = 2.5 kg

y = 6.0 cm = 0.06 m

g = 9.81 m/s²

The object in the pan comes to rest in the minimum time without overshoot. this means that damping is critical (b² = 4*k*m).

m is given and we find k from the equilibrium extension of 6.0 cm (0.06 m):

∑Fy = 0 (↑)

k*y - W = 0    ⇒   k*y - m*g = 0   ⇒   k = m*g / y

⇒   k = (2.5 kg)*(9.81 m/s²) / (0.06 m)

⇒   k = 408.75 N/m

Hence, if

b² = 4*k*m    ⇒     b = √(4*k*m) = 2*√(k*m)

⇒     b = 2*√(k*m) = 2*√(408.75 N/m*2.5 kg)

⇒     b = 63.9335 Kg/s ≈ 64 Kg/s

5 0
2 years ago
Under the Big Top elephant, Ella (2500 kg), is attracted to Phant, the 3,000 kg
Vladimir [108]

Under the Big Top elephant, Ella (2500 kg), is attracted to Phant, the 3,000 kg elephant. They are separated by 8

4 0
2 years ago
Other questions:
  • A cart moves along a track at a velocity of 3.5 cm/s. when a force is applied to the cart, its velocity increases to 8.2 cm/s. i
    15·2 answers
  • A carmaker has designed a car that can reach a maximum acceleration of 12 meters/second2. The car’s mass is 1,515 kilograms. Ass
    8·1 answer
  • Read the lab procedure for a controlled experiment that looks at the effect of heat on the circumference of bicycle tires.
    7·2 answers
  • A vector A is added to B=6i-8j. The resultant vector is in the positive x direction and has a magnitude equal to A . What is the
    12·2 answers
  • The acceleration of an object as a function of time is given by a(t) = (1.00 m/s2)t2. If displacement of the object between time
    7·1 answer
  • A 4.0 Ω resistor has a current of 3.0 A in it for 5.0 min. How many electrons pass 3. through the resistor during this time inte
    6·1 answer
  •  A bartender slides a beer mug at 1.50 m/s toward a customer at the end of a frictionless bar that is 1.20 m tall. The customer
    7·1 answer
  • a block of mass m slides along a frictionless track with speed vm. It collides with a stationary block of mass M. Find an expres
    11·1 answer
  • 1. For each of the following scenarios, describe the force providing the centripetal force for the motion: a. a car making a tur
    10·1 answer
  • Write the equivalent formulas for velocity, acceleration, and force using the relationships covered for UCM, Newton’s Laws, and
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!