answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gekata [30.6K]
2 years ago
9

1. A boat initially moving at 10 m/s accelerates at 2 m/s2 for 10 s. What is the velocity of the boat after 10 seconds?​

Physics
1 answer:
DIA [1.3K]2 years ago
5 0

Answer:

5 m/s is the answer so yeah

You might be interested in
Please help! will give brainlest!!!!!!!!!!!!
eimsori [14]

The force of friction is 19.1 N

Explanation:

According to Newton's second law, the net force acting on the bag is equal to the product between its mass and its acceleration:

\sum F = ma

where

\sum F is the net force

m is the mass

a is the acceleration

The bag is moving at constant speed, so its acceleration is zero:

a=0

Therefore the net force is zero as well:

\sum F = 0

Here we are interested only in the forces acting along the horizontal direction, therefore the net force is given by:

\sum F = F cos \theta - F_f = 0

where

F cos \theta is the horizontal component of the applied force, with

F = 22.5 N

\theta=32.0^{\circ}

F_f is the force of friction

And solving for F_f, we find

F_f =Fcos \theta=(22.5)(cos 32.0^{\circ})=19.1 N

Learn more about friction:

brainly.com/question/6217246

brainly.com/question/5884009

brainly.com/question/3017271

brainly.com/question/2235246

#LearnwithBrainly

7 0
2 years ago
An ideal gas is contained in a vessel at 300 K. The temperature of the gas is then increased to 900 K. (i) By what factor does t
Dahasolnce [82]

The question is missing some parts. Here is the complete question.

An ideal gas is contained in a vessel at 300K. The temperature of the gas is then increased to 900K.

(i) By what factor does the average kinetic energy of the molecules change, (a) a factor of 9, (b) a factor of 3, (c) a factor of \sqrt{3}, (d) a factor of 1, or (e) a factor of \frac{1}{3}?

Using the same choices in part (i), by what factor does each of the following change: (ii) the rms molecular speed of the molecules, (iii) the average momentum change that one molecule undergoes in a colision with one particular wall, (iv) the rate of collisions of molecules with walls, and (v) the pressure of the gas.

Answer: (i) (b) a factor of 3;

              (ii) (c) a factor of \sqrt{3};

              (iii) (c) a factor of \sqrt{3};

             (iv) (c) a factor of \sqrt{3};

              (v) (e) a factor of 3;

Explanation: (i) Kinetic energy for ideal gas is calculated as:

KE=\frac{3}{2}nRT

where

n is mols

R is constant of gas

T is temperature in Kelvin

As you can see, kinetic energy and temperature are directly proportional: when tem perature increases, so does energy.

So, as temperature of an ideal gas increased 3 times, kinetic energy will increase 3 times.

For temperature and energy, the factor of change is 3.

(ii) Rms is root mean square velocity and is defined as

V_{rms}=\sqrt{\frac{3k_{B}T}{m} }

Calculating velocity for each temperature:

For 300K:

V_{rms1}=\sqrt{\frac{3k_{B}300}{m} }

V_{rms1}=30\sqrt{\frac{k_{B}}{m} }

For 900K:

V_{rms2}=\sqrt{\frac{3k_{B}900}{m} }

V_{rms2}=30\sqrt{3}\sqrt{\frac{k_{B}}{m} }

Comparing both veolcities:

\frac{V_{rms2}}{V_{rms1}}= (30\sqrt{3}\sqrt{\frac{k_{B}}{m} }) .\frac{1}{30} \sqrt{\frac{m}{k_{B}} }

\frac{V_{rms2}}{V_{rms1}}=\sqrt{3}

For rms, factor of change is \sqrt{3}

(iii) Average momentum change of molecule depends upon velocity:

q = m.v

Since velocity has a factor of \sqrt{3} and velocity and momentum are proportional, average momentum change increase by a factor of

(iv) Collisions increase with increase in velocity, which increases with increase of temperature. So, rate of collisions also increase by a factor of \sqrt{3}.

(v) According to the Pressure-Temperature Law, also known as Gay-Lussac's Law, when the volume of an ideal gas is kept constant, pressure and temperature are directly proportional. So, when temperature increases by a factor of 3, Pressure also increases by a factor of 3.

4 0
2 years ago
The gravitational force produce between any two object kept 2.5×10 to the power 4 km apart is 580N.At what distance should they
timofeeve [1]

Answer:

d = 3.54 x 10⁴ Km

Explanation:

Given,

The distance between the two objects, r = 2.5 x 10⁴  Km

The gravitational force between them, F = 580 N

The gravitational force between the two objects is given by the formula

                                         F = GMm/r² newton

When the gravitational force becomes half, then the distance between them becomes

Let us multiply the above equation by 1/2 on both sides

                                        ( 1/2) F = (1/2) GMm/r²

                                                   =  GMm/2r²

                                                   =  GMm/(√2r)²

Therefore, the distance becomes √2d, when the gravitational force between them becomes half

                                           d = √2r = √2 x 2.5 x 10⁴  Km

                                               = 3.54 x 10⁴  Km

Hence, the two objects should be kept at a distance, d = 3.54 x 10⁴  Km so that the gravitational force becomes half.

3 0
2 years ago
A mass on the end of a spring undergoes simple harmonic motion. At the instant when the mass is at its maximum displacement from
hodyreva [135]

Answer:

C. At maximum displacement, its instantaneous acceleration is also at maximum.

Explanation:

Lets take

The general equation of the SHM  

Displacement

x= A sinω t

velocity

V=  Aω cosω t

Acceleration

a= -Aω² sinω t

Form the above we can say that displacement and the acceleration are in the same phase.

Therefore when displacement is maximum then acceleration also will be maximum.

Therefore the answer is C.

5 0
2 years ago
Find a numerical value for ρearth, the average density of the earth in kilograms per cubic meter. use 6378km for the radius of t
Andre45 [30]

Answer:

5501 kg/m^3

Explanation:

The value of g at the Earth's surface is

g=\frac{GM}{R^2}=9.70 m/s^2

where G is the gravitational constant

M is the Earth's mass

R=6378km = 6.378 \cdot 10^6 m is the Earth's radius

Solving the formula for M, we find the value of the Earth's mass:

M=\frac{gR^2}{G}=\frac{(9.81 m/s^2)(6.378\cdot 10^6 m)^2}{6.67\cdot 10^{-11}}=5.98\cdot 10^{24}kg

The Earth's volume is (approximating the Earth to a perfect sphere)

V=\frac{4}{3}\pi r^3 = \frac{4}{3}\pi (6.378\cdot 10^6 m)^3=1.087\cdot 10^{21} m^3

So, the average density of the Earth is

\rho = \frac{M}{V}=\frac{5.98\cdot 10^{24} kg}{1.087\cdot 10^{21} m^3}=5501 kg/m^3

4 0
2 years ago
Read 2 more answers
Other questions:
  • Which of the following ways is usable energy lost?
    14·2 answers
  • Keisha finds instructions for a demonstration on gas laws. 1. Place a small marshmallow in a large plastic syringe. 2. Cap the s
    15·2 answers
  • Liz puts a 1 kg weight and a 10 kg on identical sleds. She then applies a 10N force to each sled. Describe why the smaller weigh
    14·2 answers
  • The air in tires can support a car because gases __________.
    5·1 answer
  • Determine the number of unpaired electrons in the octahedral coordination complex [fex6]3–, where x = any halide.
    14·1 answer
  • A point charge of 6.8 C moves at 6.5 × 104 m/s at an angle of 15° to a magnetic field that has a field strength of 1.4 T.
    5·2 answers
  • Three thermometers are in the same water bath. After thermal equilibrium is established, it is found that the Celsius thermomete
    7·1 answer
  • Explain why it is dangerous to jump from a fast moving train
    7·1 answer
  • A 0.242 g sample of potassium is heated in oxygen. The result is 0.292 g of a crystalline compound. What is the formula of this
    7·1 answer
  • Venn diagrams are used for comparing and contrasting topics. The overlapping sections show characteristics that the topics have
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!