answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marissa [1.9K]
2 years ago
6

Levi bought 14 chicken wings for $22.40 how much would it cost for 12 wings

Mathematics
2 answers:
777dan777 [17]2 years ago
8 0

Answer:

x =19.20

Step-by-step explanation:

We can use ratios to solve

14 wings      12 wings

------------- = ---------------

22.40          x

Using cross products

14x = 22.40 * 12

14x =268.8

Divide each side by 14

14x/14 = 268.8/14

x =19.20

klemol [59]2 years ago
6 0

Answer:

$19.20 for 12 chicken wings

Step-by-step explanation:

you take $22.40 and divide by 14 = $1.60

take 12 x $1.60 = $!9.20

hope this helps :) :)

plz mark brainliest thanks for letting me help :)

You might be interested in
Bella is working on the world record for longest beaded necklace. She has 10,000 glass beads that have a diameter of 0.4 cm. If
Arturiano [62]

Answer:

Step-by-step explanation:You just have to divide and u get 4,000

3 0
2 years ago
When a problem involves more than one unit for a characteristic ( such as length) how can you tell which unit use is more approp
Art [367]

In the absence of clues, it is a judgment call.

Often, the problem statement or answer choices will tell you the desired units.

In general, units are available so that you can express dimensions in 4 or fewer digits with appropriate units. There are a few gaps, but the reason units are what they are is to make expressing everyday values easy to do.

SI units are easy to work with on this score, as the various available prefixes ensure that you can always express a quantity using a number between 1 and 1000. This is generally what you want to do (in the absence of direction otherwise).

For some things, there are customary units that are expected. Vehicle speed is unusally miles (or kilometers) per hour, for example. Land area is usually square feet, acres, or square miles in US units, or square meters, hectares, or square kilometers in SI units.

Generally, too, it is appreciated by your reader if the units you choose are ones they are familiar with. In most applications, you'd choose feet or yards or miles instead of furlongs, for example (unless your audience is familiar with racetrack distances).

7 0
2 years ago
Read 2 more answers
A boat on the ocean is 2 mi from the nearest point on a straight? shoreline; that point is 15 mi from a restaurant on the shore.
Sladkaya [172]

Answer:

a) x  =  0,70 miles

T  =  1/2* (√4 + x²)  +( 15 - x )/3   Objective Function to minimize

b) V(min)  = 2.59 m/hr

Step-by-step explanation:

Let assume the boat is in Point A,  she lands in point B, and R  is the restaurant

Let call  x distance between the point O in  which perpendicular line from the boat get to shoreline, and the point were she land.

We know  distance is

d = v*t       ⇒  t = d/v

She rows at 2 miles/hr  and walk at 3 miles /hr

According to that she takes

c (hypotenuse) of right triangle  AOB/ 2 rowing

and  15 - x /3  walking

Total time is:

T  =  c/2  + ( 15-x )/3          c =√(2)² + x²     ⇒  T = [√(2)² + x²  ] /2  +  ( 15-x )/3  

T  =  1/2* (√4 + x²)  +( 15 - x )/3   (1)

And that is  the Objective function to minimize

a) Taking derivatives on both sides of the equation we get

T´(t)  =  x /( √4 + x²)  - 1/3    ⇒   T´(t)  = 0     x /( √4 + x²)  - 1/3 = 0

3*x - √( √4 + x²) = 0     ⇒  3*x  =  √( √4 + x²)

Squaring both sides

9x²  =  4 + x²     ⇒  8x²  = 4       x² = 1/2      x  =  0,70 miles

If we plug this value in the Objective function we will get the minimum time

1/2* (√4 + x²)  +( 15 - x )/3    ⇒ [√ 4  + 0,5] /2 +  14,3/3 = T (min)

T(min)  =  1.06 + 4.77  = 5.83 hr

Distance L (hypotenuse of right triangle AOR)

L = √(2)²  + (15)²   L  = 15,13 miles

And that distance have to be traveled at least in 5.83 hr rowing

Then  as  v = d/t      V(min)  =  15.13/ 5.83   ⇒    V(min)  = 2.59 m/hr

6 0
2 years ago
Unit 3 parallel and perpendicular lines homework 4 parallel line proofs
Alex17521 [72]

Answer:

1) c ║ d by consecutive interior angles theorem

2) m∠3 + m∠6 = 180° by transitive property

3) ∠2 ≅ ∠5 by definition of congruency

4) t ║ v                                    {}                   Corresponding angle theorem

5) ∠14 and ∠11  are supplementary         {}  Definition of supplementary angles

6) ∠8 and ∠9  are supplementary    {}        Consecutive  interior angles theorem

Step-by-step explanation:

1) Statement                                {}                                     Reason

m∠4 + m∠7 = 180°                                 {}   Given

m∠4 ≅ m∠6                                {}              Vertically opposite angles

m∠4 = m∠6                               {}                Definition of congruency

m∠6 + m∠7 = 180°                                {}    Transitive property

m∠6 and m∠7 are supplementary     {}     Definition of supplementary angles

∴ c ║ d                               {}                       Consecutive interior angles theorem

2) Statement                                {}                                     Reason

m∠3 = m∠8                                 {}           Given

m∠8 + m∠6 = 180°                {}                 Sum of angles on a straight line

∴ m∠3 + m∠6 = 180°               {}               Transitive property

3) Statement                                {}                                     Reason

p ║ q                                 {}                    Given

∠1 ≅ ∠5                               {}                  Given

∠1 = ∠5                               {}                   Definition of congruency

∠2 ≅ ∠1                               {}                  Alternate interior angles theorem

∠2 = ∠1                               {}                   Definition of congruency

∠2 = ∠5                                  {}               Transitive property

∠2 ≅ ∠5                                  {}              Definition of congruency.

4) Statement                                {}                                     Reason

∠1 ≅ ∠5                                  {}                Given

∠3 ≅ ∠4                               {}                  Given

∠1 = ∠5                               {}                   Definition of congruency

∠3 = ∠4                               {}                  Definition of congruency

∠5 ≅ ∠4                               {}                 Vertically opposite angles

∠5 = ∠4                               {}                  Definition of congruency

∠5 = ∠3                                  {}               Transitive property

∠1 = ∠3                                  {}                Transitive property

∠1 ≅ ∠3                                  {}                Definition of congruency.

t ║ v                                    {}                   Corresponding angle theorem

5) Statement                                {}                                     Reason

∠5 ≅ ∠16                                  {}              Given

∠2 ≅ ∠4                               {}                  Given

∠5 = ∠16                               {}                  Definition of congruency

∠2 = ∠4                               {}                   Definition of congruency

EF ║ GH                               {}                  Corresponding angle theorem

∠14 ≅ ∠16                               {}                Corresponding angles

∠14 = ∠16                               {}                 Definition of congruency

∠5 = ∠14                                  {}               Transitive property

∠5 + ∠11 = 180°                {}                       Sum of angles on a straight line

∠14 + ∠11 = 180°                                {}      Transitive property

∠14 and ∠11  are supplementary         {}  Definition of supplementary angles  

6) Statement                                {}                                     Reason

l ║ m                                 {}                      Given

∠4 ≅ ∠7                               {}                  Given

∠4 = ∠7                               {}                   Definition of congruency

∠2 ≅ ∠7                               {}                  Alternate angles

∠2 = ∠7                               {}                   Definition of congruency

∠2 = ∠4                                  {}               Transitive property

∠2 ≅ ∠4                               {}                  Definition of congruency

∠2 and ∠4 are corresponding angles   {} Definition

DA ║ EB                               {}                  Corresponding angle theorem

∠8 and ∠9  are consecutive  interior angles    {} Definition

∠8 and ∠9  are supplementary    {}        Consecutive  interior angles theorem.

6 0
2 years ago
The spring has a stiffness k=200n/m and is unstretched when the 25 kg block is at
g100num [7]
To solve this we are going to use the formula fro the force applied to a spring: F=ks
where
k is the spring constant 
s is the extension 

Since we know the F=ma, we can replace that in our formula and solve for a :
ma=ks
a= \frac{ks}{m}
where
a is the acceleration 
k is the spring constant
s is the extension 
m is the mass

We know for our problem that k=200, s=0.4, and m=25. So lets replace those values in our formula to find a:
a= \frac{ks}{m}
a= \frac{(200)(0.4)}{25}
a=3.5 \frac{m}{s^2}

We can conclude that the acceleration of the block when s=0.4m is 3.5 \frac{m}{s^2}.
7 0
1 year ago
Other questions:
  • Thomas is saving money for a new mountain bike. The amount (a) Thomas needs to save is more than $50.45. Which inequality models
    10·1 answer
  • You are setting up a zip line in your yard. You map out your yard in a coordinate plane. An equation of the line representing th
    8·1 answer
  • The rule for the dilation of quadrilateral QRST to the image Q'R'S'T' is DO,0.5(x, y) → (0.5x, 0.5y). What are the coordinates o
    13·2 answers
  • which expression is equivalent to 100 n2 − 1? (10n)2 − (1)2 (10n2)2 − (1)2 (50n)2 − (1)2 (50n2)2 − (1)2
    11·2 answers
  • What are the possible values of x and y for two distinct points, (5, –2) and (x, y), to represent a function?
    8·2 answers
  • Claude spends $315 to rent a car. The car he rents costs $45 per day. He has a coupon for 2 free days. Complete the equation bel
    12·1 answer
  • Two is a zero of the equation x3−x2−14x+24=0. Which factored form is equivalent to the equation?
    15·1 answer
  • There are 135 people in a sport centre. 77 people use the gym. 62 people use the swimming pool. 65 people use the track. 27 peop
    10·1 answer
  • Tyler wants to use $300 he has saved to buy a new guitar and join a music club. The guitar costs $140. The music club has a $25
    15·2 answers
  • Solve the rational equation quantity 3 times x minus 5 end quantity divided by 7 equals four sevenths. A: f(n) = f(n − 1) ⋅ 0.3
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!