The balanced equation given is:
4NH3 + 3O2 .....> 2N2 + 6H2O
From this equation, we can note that 4 moles of NH3 are required to produce 2 moles of N2.
Therefore, the mole ratio of NH3 to N2 is 4:2 which can be simplified into 2:1
Answer:
34.2 g is the mass of carbon dioxide gas one have in the container.
Explanation:
Moles of
:-
Mass = 49.8 g
Molar mass of oxygen gas = 32 g/mol
The formula for the calculation of moles is shown below:
Thus,

Since pressure and volume are constant, we can use the Avogadro's law as:-
Given ,
V₂ is twice the volume of V₁
V₂ = 2V₁
n₁ = ?
n₂ = 1.55625 mol
Using above equation as:
n₁ = 0.778125 moles
Moles of carbon dioxide = 0.778125 moles
Molar mass of
= 44.0 g/mol
Mass of
= Moles × Molar mass = 0.778125 × 44.0 g = 34.2 g
<u>34.2 g is the mass of carbon dioxide gas one have in the container.</u>
Answer:
Reactions 1, 3 and 5
Explanation:
First thing's first, let's ensure that all the reactions given are balanced. This is given as;
CO(g) + 1/2 O2(g )→ CO2(g)
Li(s) + 1/2 F2(l) → LiF(s)
C(s) + O2(g) → CO2(g)
CaCO3(g) → CaO + CO2(g)
2Li(s) + F2(g) → 2LiF(s)
For the condition to be valid;
- There is by convention 1 mol of product made. This means we eliminate reactions with more than one mole of compound formed. This eliminates reaction 5.
- The lements haveto be in their state at room temperature. Fluorine is a gas, not a liquid, at room temperature ans pressure, so 2 is not a correct answer.
This leaves us with reactions 1, 3 and 5 as the correct reactions that satisify the condition.
The answer to this question is "carrying capacity." The term "growth
rate," refers to how fast a population grows, and the term "population
density," refers to the number of organisms located within a specific
area. Carrying capacity is correct because is directly addresses the
maximum number of organisms that an ecosystem can handle, as opposed to
how fast they are growing or how many there currently are.
Carbon is what you breathe out and chloride is like somewhere in your immune system