<h3>Answer:</h3>
0.8133 mol
<h3>Solution:</h3>
Data Given:
Moles = n = ??
Temperature = T = 25 °C + 273.15 = 298.15 K
Pressure = P = 96.8 kPa = 0.955 atm
Volume = V = 20.0 L
Formula Used:
Let's assume that the Argon gas is acting as an Ideal gas, then according to Ideal Gas Equation,
P V = n R T
where; R = Universal Gas Constant = 0.082057 atm.L.mol⁻¹.K⁻¹
Solving Equation for n,
n = P V / R T
Putting Values,
n = (0.955 atm × 20.0 L) ÷ (0.082057 atm.L.mol⁻¹.K⁻¹ × 298.15 K)
n = 0.8133 mol
42,256 = 2,000
42,256 = 200
together they'd be 2,200 (if that's what you needed as well)
Answer:
Equilibrium constant of the given reaction is 
Explanation:
....
....
The given reaction can be written as summation of the following reaction-


......................................................................................

Equilibrium constant of this reaction is given as-
![\frac{[NOBr]^{2}}{[N_{2}][O_{2}][Br_{2}]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BNOBr%5D%5E%7B2%7D%7D%7B%5BN_%7B2%7D%5D%5BO_%7B2%7D%5D%5BBr_%7B2%7D%5D%7D)
![=(\frac{[NOBr]}{[NO][Br_{2}]^{\frac{1}{2}}})^{2}(\frac{[NO]^{2}}{[N_{2}][O_{2}]})](https://tex.z-dn.net/?f=%3D%28%5Cfrac%7B%5BNOBr%5D%7D%7B%5BNO%5D%5BBr_%7B2%7D%5D%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%7D%29%5E%7B2%7D%28%5Cfrac%7B%5BNO%5D%5E%7B2%7D%7D%7B%5BN_%7B2%7D%5D%5BO_%7B2%7D%5D%7D%29)


Answer:
Explanation:
The vapor pressure of diethyl ether (ether) is 463.57 mm Hg at 25 °C. A nonvolatile, nonelectrolyte that dissolves in diethyl ether is aspirin. Calculate the vapor pressure of the solution at 25 °C when 14.88 grams of aspirin, C9H8O4 (180.1 g/mol), are dissolved in 269.2 grams of diethyl ether. diethyl ether = CH3CH2OCH2CH3 = 74.12 g/mol.
mol of C4H10O = mass of C4H10O / molar mass of C4H10O
= 242.1 g / 74.12 g/mol
= 3.266 mol
mol of C9H8O4 = mass of C9H8O4 / molar mass of C9H8O4
= 10.33 g / 180.1 g/mol
= 0.05736 mol
mole fraction of C4H10O,
X = mole of CHH1O0 / total mol
= (3.266)/(3.266 + 0.05736)
= 0.9827
now use:
P = Po*X
P = 463.57 * 0.9827
= 455.6 mm Hg
In a car driven by a gasoline combustion engine, heat energy is quickly converted into kinetic energy which results in the motion of the car.
According to the law of the conservation of energy, energy cannot be destroyed or created. It is can only be transformed from one form to another.