answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vsevolod [243]
2 years ago
3

Francesco, a pizza chef preparing the dough for your pizza is throwing it to expand it. In this process, you notice that a chunk

of it comes off, flying separately from the rest and on to the floor. If Francesco is 6 feet and 3 inches tall, and the chunk flies off vertically straight up from this height at a speed of 1 m/s, with what speed does the chunk hit the ground?
Physics
1 answer:
Neporo4naja [7]2 years ago
3 0

Answer:

6.12 m/s

Explanation:

In order to solve this we have two parts of this problem, first we have the time that the pizza dough spent going upwards and after that we have a free fall from there, so we will use the free fall formula after we figured out whats the final height the dough reached after being thrown from Francesco's height which is 6ft3inches or 1.90 meters

We first have to find out how much time the dough spent in the air before reaching 0 as final speed and then started the free falling:

The formula would be:

Vf=Vo-at\\0=1-(-9.81t)\\1=9.81t\\t=\frac{1}{9.81}\\t=.101

The formula to find out final height would be:

y = \frac{ h + Vy (t-gt^{2})}{2} \\

Now we just insert the values we know

y = h+ \frac{ Vy (t-gt^{2})}{2} \\\\y = 1.90 +\frac{ .101-(-9.81)(.101)^{2})}{2} \\\\y=1.91

So from 1.91 meteres the free fal started we have to just calculate the final velocity with the formula for free fall and velocity:

(vf)^{2} =Vo^2 +2ad

Since Vo is 0 because we are talking about free falling we just insert the values we know:

(vf)^{2} =Vo^2 +2ad\\(vf)^{2} =2ad\\(vf)^{2} =2(9.81)(1.91)\\vf=\sqrt{37.4742} \\Vf=6.12m/s

So the final speed that the dough hit the ground with is 6.12 m/s

You might be interested in
A car travels 30 miles in 1 hour on a winding mountain road. Which of the following is a true statement?
siniylev [52]

Answer:

The true statement is:

"(C) The magnitude of the average velocity is equal to 30 m.p.h."

Explanation:

Given that a car travels 30 miles in 1 hour on a winding mountain road.

Let' check all the statements one by one:

(A) The magnitude of the total displacement is larger than the distance traveled.

Since the entire motion of the car is not exactly given in the question, so it is not possible to tell whether the magnitude of the total displacement is larger than the distance traveled or not.

Thus, this statement is not true.

(B) The magnitude of the average velocity is greater than 30 m.p.h.

The average velocity of an object is defined as the total displacement covered by the particle divided by the total time taken in covering that displacement.

Total distance covered by the car = 30 miles.

Total time taken by the car to cover this distance = 1 hour.

Therefore, the average velocity of the car for this time interval = \rm \dfrac{30\ miles}{1\ hour }= 30\ m.p.h.

Thus, this statement is also not true.

(C) The magnitude of the average velocity is equal to 30 m.p.h.

As is cleared in part (B) section above, the average velocity of the car in the given time interval is 30 m.p.h.

Thus, this statement is true.

(D)The magnitude of the average velocity is less than to 30 m.p.h.

Since. the average velocity of the car is 30 m.p.h.

Thus, this statement is not true.

(E)The car traveled with a constant speed of 30 m.p.h.

The motion of the car on the mountain road is not thoroughly given in the question, so again it is not possible to tell whether the car traveled with a constant speed of 30 m.p.h. or not.

Thus, this statement is also not true.

4 0
2 years ago
Read 2 more answers
You are working on a laboratory device that includes a small sphere with a large electric charge Q. Because of this charged sphe
madam [21]

Answer:

the only effect it has is to create more induced charge at the closest points, but the net face remains zero, so it has no effect on the flow.

Explanation:

We can answer this exercise using Gauss's law

      Ф = ∫ e . dA = q_{int} / ε₀

field flow is directly proportionate to the charge found inside it, therefore if we place a Gaussian surface outside the plastic spherical shell.  the flow must be zero since the charge of the sphere is equal  induced in the shell, for which the net charge is zero. we see with this analysis that this shell meets the requirement to block the elective field

From the same Gaussian law it follows that if the sphere is not in the center, the only effect it has is to create more induced charge at the closest points, but the net face remains zero, so it has no effect on the flow , so no matter where the sphere is, the total induced charge is always equal to the charge on the sphere.

5 0
2 years ago
If a galaxy is located 200 million light years from Earth, what can you conclude about the light from that galaxy?
natulia [17]
If a galaxy is located 200 million light years from Earth, you can conclude that t<span>he light will take 200 million years to reach Earth. </span>
8 0
2 years ago
Read 2 more answers
What can happen to an electron when sunlight hits it? select all that apply. select all that apply. it can drop down to a lower
vlabodo [156]
There are two possible answers:
<span>- it can move out to a higher electron shell
- </span><span> it can stay in its original shell
</span><span>
In fact, sunlight consists of photons. When sunlight hits an electron, the electron can absorbs a photon, so it gains energy: as a result, the electron can move to a higher electron shell, which corresponds to a high energy level in the atom, if the energy given by the photon is at least equal to the energy difference between the two levels. However, if the photon energy is not large enough, the electron will stay in the same shell.</span>
4 0
2 years ago
Read 2 more answers
What is the final temperature when a 3.0 kg gold bar at 99 0C is dropped into 0.22 kg of water at 25oC?
slavikrds [6]

I will post my work, but is that 99 degrees Celsius and 25 degrees Celsius?


All you have to do is plug in the initial temperature for gold where it says Tg and the initial temperature for the water where it says Tw and then plug that in and you will have your answer.

8 0
2 years ago
Other questions:
  • If the frequencies of two component waves are 24 Hz and 20 Hz, they should produce _______ beats per second.
    10·2 answers
  • How high above the earth's surface is g reduced to 8.80m/^2?
    12·2 answers
  • What is the acceleration of a ball rolling down a ramp that starts from rest and travels 0.9 m in 3 s?
    15·1 answer
  • Starting with only the Balmer series light (visible light), how could we ensure that the solar panels generate a current that Ma
    14·2 answers
  • A truck traveling down the highway collides with a slower moving mosquito traveling in the same direction. Which of the followin
    5·1 answer
  • Assume that the turntable deccelerated during time Δt before reaching the final angular velocity ( Δt is the time interval betwe
    14·1 answer
  • Calculate the true mass (in vacuum) of a piece of aluminum whose apparent mass is 4.5000 kg when weighed in air. The density of
    15·1 answer
  • A boy is whirling a stone around his head by means of a string. The string makes one complete revolution every second; and the m
    8·1 answer
  • In some amazing situations, people have survived falling large distances when the surface they land on is soft enough. During a
    15·1 answer
  • Hiran is standing beside the road when he hears a bird flying away from hip and chirping. The bird’s chirp has a frequency of 18
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!