Answer:
33.725 rpm
Explanation:
The relationship between rotational speed in radians per second and acceleration is ...

We want the rotation rate in RPM, so we need the conversion ...

Then the required rotational speed in RPM is ...

The rotation rate needs to be about 33.7 rpm to give an acceleration of 1.4g at the astronaut's feet.
In atmospheric science, surface pressure<span> is the atmospheric </span>pressure<span> at a location on Earth's </span>surface<span>. It is directly proportional to the mass of air over that location. For numerical reasons, atmospheric models such as general circulation models (GCMs) usually predict the nondimensional logarithm of </span>surface pressure<span>.
The answer is decrease more slowly
</span>
Answer:
Proton: v=0.689 m/s
Neutron: v=0.688 m/s
Electron: v=1265.078 m/s
Alpha particle: v=0.173 m/s
Explanation:
De Broglie equation allows you to calculate the “wavelength” of an electron or any other particle or object of mass m that moves with velocity v:
λ=
h is the Planck constant: 6.626×10⁻³⁴
We know that the wavelength of the particle is 575 nm (575×10⁻⁹m), so we find the velocity v for each particle:
λ=
v=h÷(mλ)
<u>Proton:</u>
m=1.673×10⁻²⁴ g ·
=1.673×10⁻²⁷ kg
v=h÷(mλ)
v=6.626×10⁻³⁴
÷(1.673×10⁻²⁷ kg×575×10⁻⁹m)
v=0.689 m/s
<u>Neutron:</u>
m=1.675×10⁻²⁴ g ·
=1.675×10⁻²⁷ kg
v=h÷(mλ)
v=6.626×10⁻³⁴
÷(1.675×10⁻²⁷ kg×575×10⁻⁹m)
v=0.688 m/s
<u>Electron:</u>
m= 9.109×10⁻²⁸ g ·
=9.109×10⁻³¹ kg
v=h÷(mλ)
v=6.626×10⁻³⁴
÷(9.109×10⁻³¹ kg×575×10⁻⁹m)
v=1265.078 m/s
<u>Alpha particle:</u>
m=6.645×10⁻²⁴ g ·
=6.645×10⁻²⁷ kg
v=h÷(mλ)
v=6.626×10⁻³⁴
÷(6.645×10⁻²⁷ kg×575×10⁻⁹m)
v=0.173 m/s