A) Volume = (1/12)pi*h^3, with height = 5cm.
<span>b) You should be able to differentiate V = (1/12)pi*h^3 with respect to h, and you were given dh/dt = -0.3 cm/hr.
</span>
does that make sense?
Answer:
t = 137.9 years
Step-by-step explanation:
Hi, to answer this question we have to apply an exponential growth function:
A = P (1 + r) t
Where:
p = original population
r = growing rate (decimal form)
t= years
A = population after t years
Replacing with the values given:
A = 6,250 (1 + 3.75/100)^t
A = 6,250 (1 + 0.0375)^t
A = 6,250 (1.0375)^t
1915-1890 = 25 years passed (t)
A = 6,250 (1.0375)^25
A = 15,689
1940-1890 = 50 years passed (t)
A = 6,250 (1.0375)^50
A = 39,381
- When will the population reach 1,000,000?. We have to subtitute A=1000000 and solve for t.
1,000,000= 6,250 (1.0375)^t
1,000,000/ 6,250 =(1.0375)^t
160 = 1.0375^t
log 160 = log 1.0375^t
log 160 = (t ) log 1.0375
log160 / log 1.0375= t
t = 137.9 years
Answer: Hello! The answer to your question is B, the intersection of the lines drawn to bisect each vertex of the triangle. Hope this helped! Please pick my answer as the Brainliest!
<span> the probability that she rolls an odd number AND and pulls a red chip
so it is = Prob(odd no) * Prob(red chip)
Prob(odd no) for a fair die = 1/2
Prob(red chip) = red chip / total chip = 2/(2+1) = 2/3
so the ans is 1/2 * 2/3 = 1/3
</span>
Answer:
As per the given statement:
The region bounded by the given curves about the y-axis,
, y=0, x = 0 and x = 1
Using cylindrical shell method:
The volume of solid(V) is obtained by rotating about y-axis and the region under the curve y = f(x) from a to b is;
where 
where x is the radius of the cylinder
f(x) is the height of the cylinder.
From the given figure:
radius = x
height(h) =f(x) =y=
a = 0 and b = 1
So, the volume V generated by rotating the given region:
![V =2 \pi \int_{0}^{1} x ( 13e^{-x^2}) dx\\\\V=2\pi\left [ -\frac{13}{2}e^{-x^2} \right ]_{0}^{1}\\\\V=2\pi\left (-\frac{13}{2e}-\left(-\frac{13}{2}\right) \right )\\\\V=-\frac{13\pi }{e}+13\pi](https://tex.z-dn.net/?f=V%20%3D2%20%5Cpi%20%5Cint_%7B0%7D%5E%7B1%7D%20x%20%28%2013e%5E%7B-x%5E2%7D%29%20dx%5C%5C%5C%5CV%3D2%5Cpi%5Cleft%20%5B%20-%5Cfrac%7B13%7D%7B2%7De%5E%7B-x%5E2%7D%20%5Cright%20%5D_%7B0%7D%5E%7B1%7D%5C%5C%5C%5CV%3D2%5Cpi%5Cleft%20%28-%5Cfrac%7B13%7D%7B2e%7D-%5Cleft%28-%5Cfrac%7B13%7D%7B2%7D%5Cright%29%20%5Cright%20%29%5C%5C%5C%5CV%3D-%5Cfrac%7B13%5Cpi%20%7D%7Be%7D%2B13%5Cpi%20)
therefore, the volume of V generated by rotating the given region is 