<u>Answer:</u>
Mass of base ball
<u>Explanation:</u>
Circumference of baseball = 2πr = 23 cm
So radius of baseball = 3.66 cm =
m
Mass per unit volume of baseball = Mass per unit volume of neutron or proton.
Mass of proton =
kg
Diameter of proton =
m
Radius of proton =
m
Volume of ball = 
Now substituting all values in Mass per unit volume of baseball = Mass per unit volume of neutron or proton.


So mass of base ball
Answer:
10.4 m/s
Explanation:
The problem can be solved by using the following SUVAT equation:

where
v is the final velocity
u is the initial velocity
a is the acceleration
t is the time
For the diver in the problem, we have:
is the initial velocity (positive because it is upward)
is the acceleration of gravity (negative because it is downward)
By substituting t = 1.7 s, we find the velocity when the diver reaches the water:

And the negative sign means that the direction is downward: so, the speed is 10.4 m/s.
Answer:
Force constant, k = 653.3 N/m
Explanation:
It is given that,
Weight of the bag of oranges on a scale, W = 22.3 N
Let m is the mass of the bag of oranges,


m = 2.27 kg
Frequency of the oscillation of the scale, f = 2.7 Hz
We need to find the force constant (spring constant) of the spring of the scale. We know that the formula of the frequency of oscillation of the spring is given by :



k = 653.3 N/m
So, the force constant of the spring of the scale is 653.3 N/m. Hence, this is the required solution.
Answer:
7500 m/s
Explanation:
Centripetal acceleration = gravity
v² / r = GM / r²
v = √(GM / r)
Given:
G = 6.67×10⁻¹¹ m³/kg/s²
M = 5.98×10²⁴ kg
r = 6.8×10⁵ + 6.357×10⁶ = 7.037×10⁶ m
v = √(6.67×10⁻¹¹ (5.98×10²⁴) / (7.037×10⁶))
v = 7500
The orbital velocity is 7500 m/s.
Answer:
4.527×10^{10} N/m^2
Explanation:
Assuming that the resulting stress is asked in the question in N/m^2
The stress is given by the expression
σ = F/A
F= 32μN and A, Area= πr^2
r, radius = 15 nm
Putting values we get

= 4.527×10^{10} N/m^2
hence the resulting stress is 4.527×10^{10} N/m^2