answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Scrat [10]
2 years ago
4

Which properties describe covalent compounds? A:hard and brittle. C:able to be dissolved in water. C:unable to conduct electrici

ty. D:high melting and boiling points
Physics
2 answers:
JulijaS [17]2 years ago
8 0
<span>If electrons move from one place to another, electricity is conducted. This happens in the delocalized bonds in metals as well as in static electricity discharge and conductivity in plasmas.If ions move from one place to another, their charges move along with them. As a result, if you have a solution with a dissolved ionic compound (or if you have a melted ionic compound, for that matter), these charges are free to move around if you apply a voltage to them.</span>
Ludmilka [50]2 years ago
7 0

C) unable to conduct electricity

You might be interested in
A man can row at 6kmhr in still water and want to cross a river to a position exactly opposite his starting point. If the river
Lina20 [59]

Answer:

if the river is 5km wide and is flowing at 4km/hr. eastwards find by scale ... Find either by scale drawing or by calculation (1) the direction in which he must ... He could row his boat directly across the river to point C and then run to B, or he ... A man who can swim at 5km/h in still water swims towards the east to cross arriver.

Explanation:

3 0
2 years ago
You would like to know whether silicon will float in mercury and you know that can determine this based on their densities. Unfo
dolphi86 [110]

Answer:

Explanation:

To convert gram / centimeter³ to kg / m³

gram / centimeter³

= 10⁻³ kg / centimeter³

= 10⁻³  / (10⁻²)³ kg / m³

= 10⁻³ / 10⁻⁶ kg / m³

= 10⁻³⁺⁶ kg / m³

= 10³ kg / m³

So we shall have to multiply be 10³ with amount in gm / cm³ to convert it into kg/m³

2.33 gram / cm³

= 2.33 x 10³ kg / m³ .

3 0
2 years ago
Which statement describes one way in which global winds affect weather and climate? A. Polar easterlies move warm air to the mid
Genrish500 [490]

The answer your looking for is "D".

4 0
2 years ago
Read 2 more answers
A hot (70°C) lump of metal has a mass of 250 g and a specific heat of 0.25 cal/g⋅°C. John drops the metal into a 500-g calorimet
Gnom [1K]

Answer:

d. 37 °C

Explanation:

m_{m} = mass of lump of metal = 250 g

c_{m} = specific heat of lump of metal  = 0.25 cal/g°C

T_{mi} = Initial temperature of lump of metal = 70 °C

m_{w} = mass of water = 75 g

c_{w} = specific heat of water = 1 cal/g°C

T_{wi} = Initial temperature of water = 20 °C

m_{c} = mass of calorimeter  = 500 g

c_{c} = specific heat of calorimeter = 0.10 cal/g°C

T_{ci} = Initial temperature of calorimeter = 20 °C

T_{f} = Final equilibrium temperature

Using conservation of heat

Heat lost by lump of metal = heat gained by water + heat gained by calorimeter

m_{m} c_{m} (T_{mi} - T_{f}) = m_{w} c_{w} (T_{f} - T_{wi}) +  m_{c} c_{c} (T_{f} - T_{ci}) \\(250) (0.25) (70 - T_{f} ) = (75) (1) (T_{f} - 20) + (500) (0.10) (T_{f} - 20)\\T_{f} = 37 C

6 0
2 years ago
The brake in most cars makes use of a hydraulic system. This system consists of a fluid filled tube connected at each end to a p
Maksim231197 [3]

Answer:

The force at the brake pad = 250 N

Explanation:

The hydraulic brake system works on the Pascal's Principle for pressure transmission in fluids; the pressure applied to a fluid is transmitted undiminished in all directions.

For hydraulic systems, the pressure applied to the brake pedal is transmitted undiminished through the fluid filled tube, connected at each end to a piston, to the brake pad.

Hence, mathematically,

P(brake pedal) = P(break pad)

Pressure is given as the force applied divided by the cross sectional Area perpendicular to the direction of applied force.

P(brake pedal) = (Force applied on the brake pedal) ÷ (Cross Sectional Area of the brake pedal)

Force applied on the brake pedal = 50 N

Cross Sectional Area of the brake pedal = 3 cm²

P(brake pedal) = (50/3) = 16.67 N/cm²

P(brake pad) = P(brake pedal) = 16.67 N/cm²

P(brake pad) = (Force applied on the brake pad) ÷ (Cross Sectional Area of the brake pad)

Force applied on the brake pad = F = ?

Cross Sectional Area of the brake pad = 15 cm²

16.67 = (F/15)

F = 16.67 × 15 = 250 N

Hence, the force at the brake pad = 250 N

Hope this Helps!!!

7 0
2 years ago
Other questions:
  • Henry can lift a 200 N load 20 m up a ladder in 40 s. Ricardo can lift twice the load up one-half the distance in the same amoun
    14·2 answers
  • A kayaker paddles at 4.0 m/s in a direction 30° south of west. He then turns and paddles at 3.7 m/s in a direction 20° west of s
    14·2 answers
  • The electric field near the earth's surface has magnitude of about 150n/c. what is the acceleration experienced by an electron n
    5·1 answer
  • Neglecting the effect of air resistance a stone dropped off a 175-m high building lands on the ground in: A)3s B)4s C)6s D)18s E
    12·1 answer
  • two people, each with a mass of 70 kg, are wearing inline skates and are holding opposite ends of a 15m rope. One person pulls f
    14·1 answer
  • A steel sphere sits on top of an aluminum ring. The steel sphere (a= 1.1 x 10^-5/degrees celsius) has a diameter of 4.000 cm at
    15·1 answer
  • In Hooke's law, Fspring=kΔx , what does the Fspring stand for?
    8·2 answers
  • A uniformly dense solid disk with a mass of 4 kg and a radius of 2 m is free to rotate around an axis that passes through the ce
    6·2 answers
  • A falling skydiver opens his parachute. A short time later, the weight of the skydiver-parachute system and the drag force exert
    13·1 answer
  • It takes a slug 20 minutes to travel from the grass to the trash can , a trip of 15 meters. How far could the slug travel in 60
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!